COR2ED® THE HEART OF MEDICAL EDUCATION

THE ROLE OF PARPI IN PROSTATE CANCER: EXPERTS KNOWLEDGE SHARE AUGUST 2020

Dr. Neal D. Shore (Chair) Carolina Urologic Research Center

Prof. Andrew J. Armstrong Duke University School of Medicine

Prof. Emmanuel S. Antonarakis Johns Hopkins Medicine

FUNDING

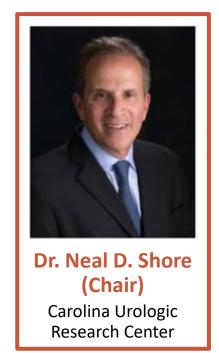
Please note:

The views expressed within this presentation are the personal opinions of the experts. They do not necessarily represent the views of the expert's academic institution.

AstraZeneca has provided a sponsorship grant towards this independent programme.

EXPERTS KNOWLEDGE SHARE

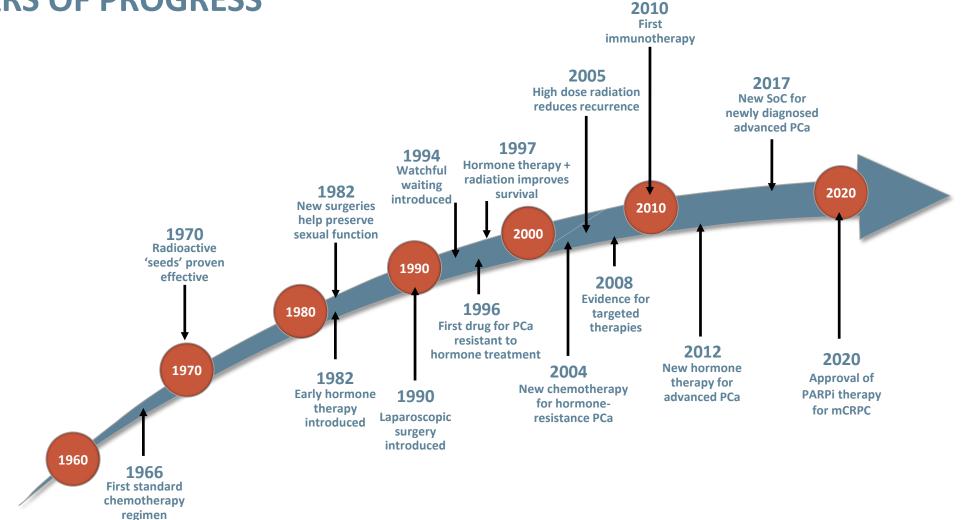
THE OBJECTIVE OF THIS MEETING IS TO DISCUSS THE TOPIC 'THE ROLE OF PARPI IN PROSTATE CANCER'


- Your opportunity to **discuss and share learnings on a challenging topic** within the area of DDR and prostate cancer
- A chance to hear **the views of our Experts** and allow them to answer the questions that are important to you
- Review and discuss **Patient Case Studies**, using the questions that you have sent in advance of this evening

- 1. Understand the MoA of PARP inhibition and its role in the treatment of prostate cancer
- 2. Understand the **prevalence** of DDR mutations in prostate cancer and be able to implement the **testing** strategies (specifically for somatic mutations) to predict if the prostate tumour is likely to respond to a PARPi or other treatment
- 3. Recognise the clinical efficacy and safety profile of PARPi for patients with prostate cancer
- 4. Understand the place of **PARP inhibition in the prostate cancer treatment pathway** in the context of other non-hormonal agents and the potential for upcoming combination therapies

INTRODUCTION

DISCLOSURE



Dr. Neal D. Shore has the following relevant financial relationships to disclose:

- **Research/Consulting:** AbbVie, Amgen, Astellas, AstraZeneca, Bayer, BMS, Clovis Oncology, Dendreon, Exact Imaging, FerGene, Ferring, Janssen, MDx Health, Merck, Myovant, Nymax, Pfizer, Sanofi, Tolmar
- Stock/Patents/Salary: none

ADVANCES IN PROSTATE CANCER THERAPY: 60 YEARS OF PROGRESS

mCRPC, metastatic castrate-resistant prostate cancer; PARPi, poly ADP ribose polymerase inhibitor; PCa, prostate cancer; SoC, standard of care Cancer Progress Timeline: Prostate Cancer (modified). Available from: <u>https://www.asco.org/research-guidelines/cancer-progress-timeline/prostate-cancer</u>. Accessed, August 2020. Available from: <u>www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer</u>. Accessed, August 2020. Available from: <u>www.fda.gov/drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate</u> . Accessed, August 2020.

MAJOR PROGNOSTIC FEATURES OF PROSTATE CANCER

- 5-year survival is close to 100% in patients with local or regional prostate cancer
- Loss of hormone sensitivity and metastasis represent two major negative prognostic events in prostate cancer

New Cancer Diagnosis	5-year OS range
Local or regional prostate cancer	99-100%
Non-mCRPC	20-60%
mHSPC	23.6-51.9%
mCRPC	10-26%

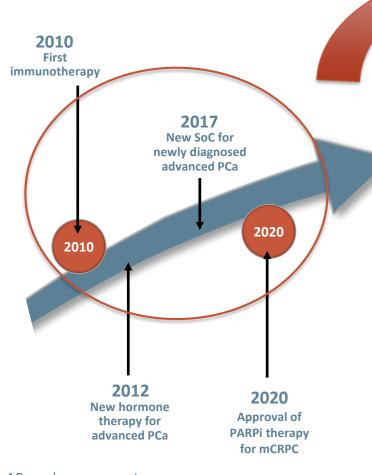
mHSPC, metastatic hormone-sensitive prostate cancer; OS, overall survival

https://www.cancer.net/cancer-types/prostate-

cancer/statistics#:~:text=The%205%2Dyear%20survival%20rate%20for%20most%20men%20with%20local,prostate%20cancer%20combined%20is%2098%25.

https://www.urotoday.com/library-resources/m0-prostate-cancer/111535-treatment-advances-in-non-metastatic-castration-resistant-prostate-cancer.html

Madan RA et al., <u>https://pubmed.ncbi.nlm.nih.gov/18628467/;</u>


Carniero et al., https://pubmed.ncbi.nlm.nih.gov/27802009/

Francini et al., https://pubmed.ncbi.nlm.nih.gov/30643173/

Halabi et al., https://pubmed.ncbi.nlm.nih.gov/26951312/

PROSTATE CANCER THERAPY: RAPID ADVANCES

AR, androgen receptor;HRR, homologous recombination repair;MSI, microsatellite instabilityAll information available at: <u>www.drugs.com</u>

9 life-prolonging approvals since 2010

	Drug name	Approval	Drug Class	Indication	
	Sipuleucel-T	April 2010	Autologous cellular immunotherapy	mCRPC	
	Cabazitaxel	June 2010	Chemotherapy	Hormone-refractory metastatic PCa/mCRPC	
	Abiraterone Acetate	April 2011	Anti-androgen	mCRPC	
	Enzalutamide	Aug 2012	AR inhibitor	mCRPC, non-mCRPC, mHSPC	
	Radium 223	May 2013	Radiopharmaceutical	mCRPC bone	
	Pembrolizumab	May 2017	Monoclonal antibody	Unresectable/metastatic solid tumours MSI high	
	Darolutamide	July 2019	AR inhibitor	Non-mCRPC	
	Apalutamide	Feb 2018	Anti-androgen	mHSPC/non-mCRPC	
	Olaparib	May 2020	PARPi	HRR gene-mutated mCRPC	

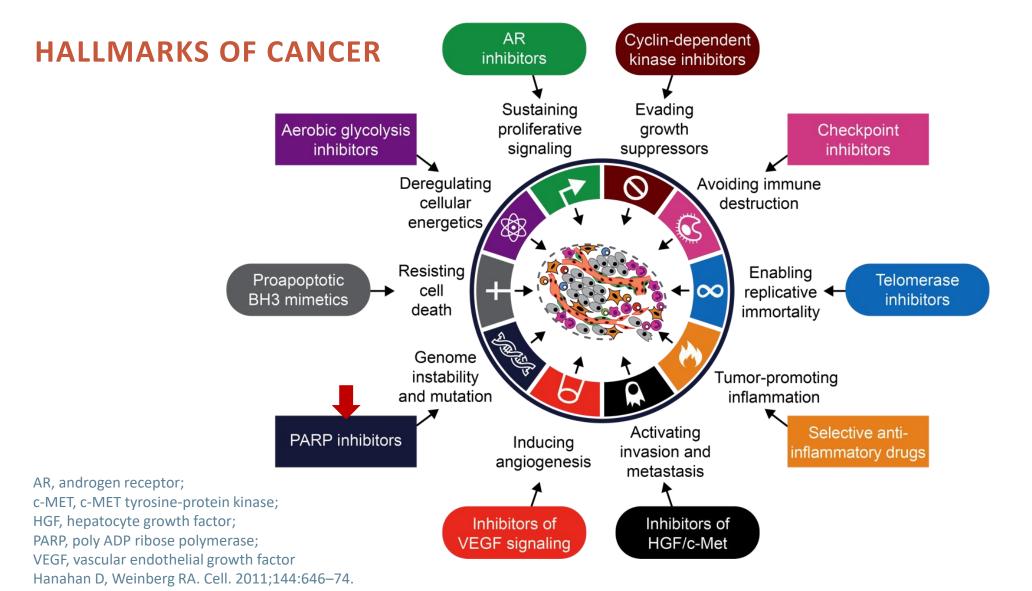
PARPi: WHAT DO WE NEED TO KNOW?

- Which mutations confer sensitivity to PARPi?
- How common are these mutations in prostate cancer?
- How do we identify patients with these mutations?
- What is the current role of PARPi in prostate cancer?

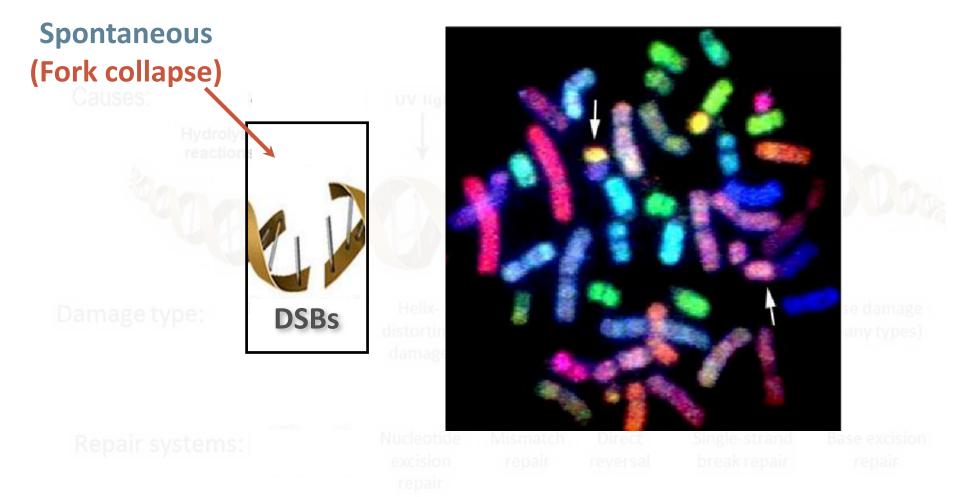
WHAT IS PARP INHIBITION AND HOW DO WE IDENTIFY PATIENTS?

Prof. Emmanuel S. Antonarakis, MD

Professor of Oncology and Urology Johns Hopkins University School of Medicine Sidney Kimmel Comprehensive Cancer Center Baltimore, Maryland

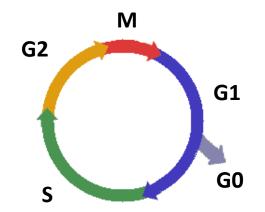

DISCLOSURE

Prof. Emmanuel S. Antonarakis has the following relevant financial relationships to disclose:


- Research/Consulting: Amgen, Astellas, AstraZeneca, Bayer, BMS, Celgene, Clovis, Dendreon, Eli Lilly, ESSA, Genentech, GSK, Janssen, Johnson & Johnson, Medivation, Merck, Novartis, Qiagen, Sanofi, Tokai
- Stock/Patents/Salary: None

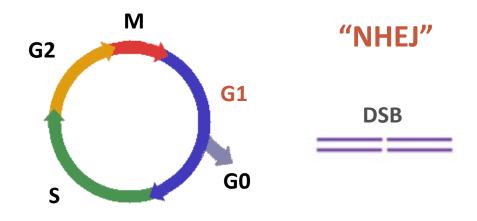
GENOMIC INSTABILITY IS A TARGETABLE HALLMARK OF CANCER

ABERRANT DOUBLE-STRAND BREAK REPAIR: GENOME INSTABILITY

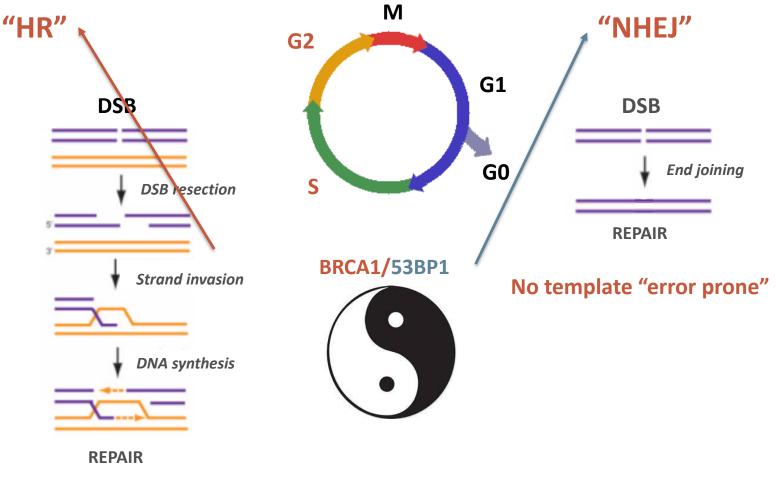


DSB, double-strand break

15

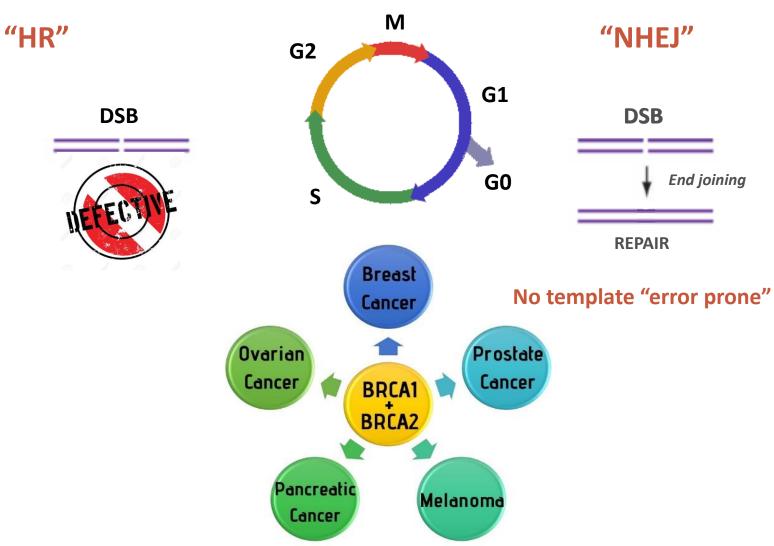

DSB REPAIR: CELL CYCLE

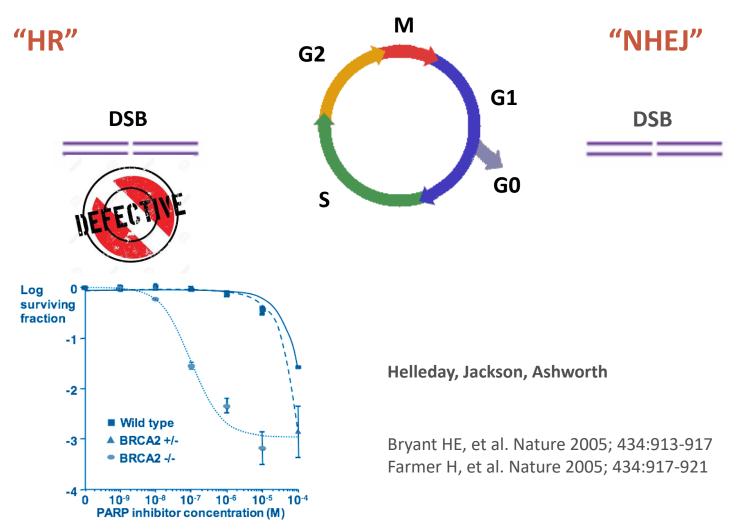
DSB REPAIR: CELL CYCLE



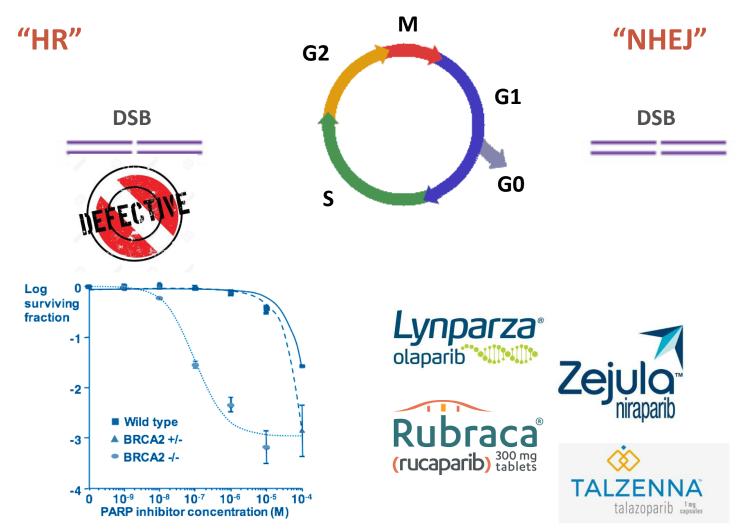
"Error prone"

DSB REPAIR: MEDIATED BY TWO PATHWAYS WITH DIFFERENT ERROR FREQUENCY



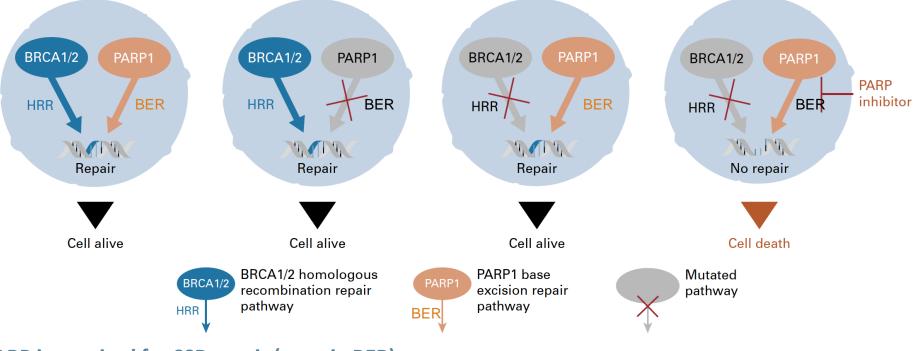

Template based "error free"

DSB REPAIR: HR GENE DEFECTS REDUCE DNA REPAIR OPTIONS

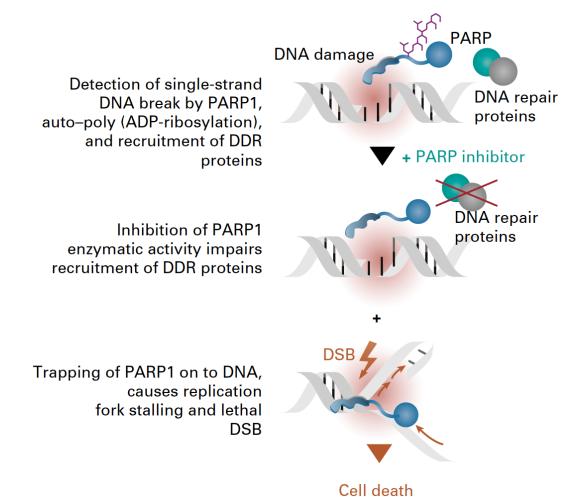

DSB REPAIR DEFECTS: THERAPEUTIC EXPLOITATION IN CANCER

THE HEART OF MEDICAL EDUCATION

PARP INHIBITORS: THERAPEUTIC EXPLOITATION IN CANCER

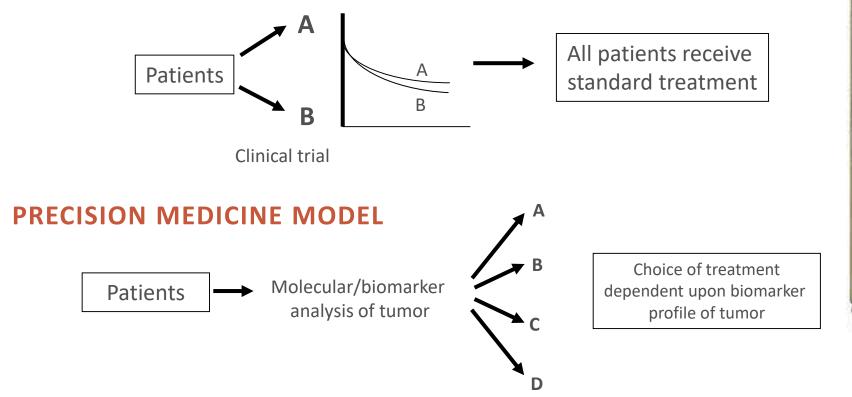


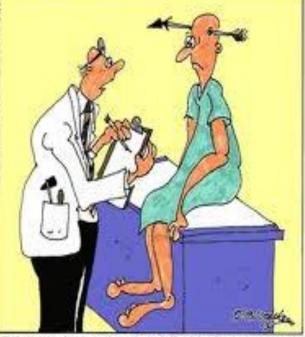
PARP INHIBITORS: 'SYNTHETIC LETHALITY' REQUIRES BOTH REPAIR PATHWAYS TO BE BLOCKED


- **BRCA: "copy editor";** HRR
- **PARP: "spell check";** BER

PARP is required for SSB repair (e.g. via BER) MOA – inhibiting SSB/BER is synthetic lethal with HRD

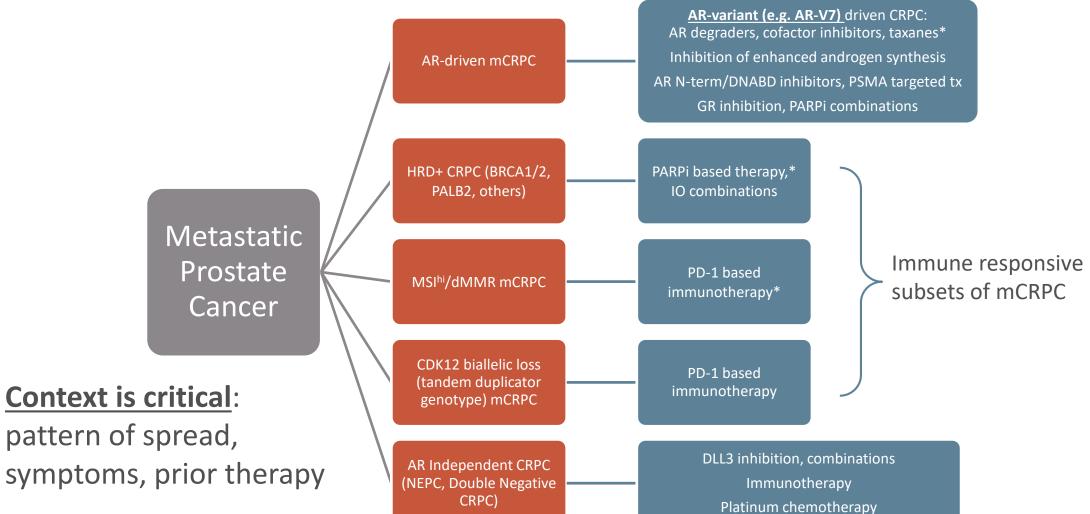
PARP INHIBITORS: ENZYMATIC INHIBITION & PARP TRAPPING


MOA – trapping PARP is synthetic lethal with HRD


DDR MUTATIONS IN METASTATIC PROSTATE CANCER Prevalence and Screening

CHANGING TREATMENT PATTERNS IN THE ERA OF PRECISION MEDICINE

TRADITIONAL MODEL OF DRUG DEVELOPMENT


"Off hand, I'd say you're suffering from an arrow through your head, but just to play it safe, I'm ordering a bunch of tests."

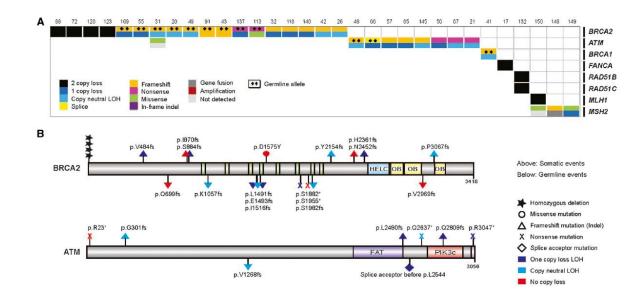
Goal: analytic validation of biomarker \rightarrow clinical validation of clinical utility and patient benefits with matched therapy **Key contexts:** prior therapy, histology, patient phenotype, comorbidities, costs, toxicities

Fröhlich H, et al. BMC Med. 2018;16(1):150; Redekop WK, Mlasi D. Value Health. 2013;16(6 Suppl):S4-9; Krzyszczyk P, et al. Technology (Singap World Sci). 2018;6:79-100.

2020 ACTIONABLE PATHWAYS, GENOTYPES AND PHENOTYPES

COR2ED® THE HEART OF MEDICAL EDUCATION

*Currently approved therapies for prostate cancer


CDK12, cyclin-dependent kinase 12; CRPC, castrate-resistant prostate cancer; DLL, delta-like ligand; dMMR, deficient mismatch repair; DNABD, DNA binding domain; IO, immuno-oncology; (m)CRPC, (metastatic) castrateresistant prostate cancer; MSI^{hi}, microsatellite instability-high; NEPC, neuroendocrine prostate cancer; PALB2, partner and localizer of BRCA2; PARPi, poly ADP ribose polymerase inhibitor; PD-(L)1, programmed death (ligand)-1; PSMA, prostate-specific membrane antigen; Tx, therapy

Armstrong CM, Cao AC. Asian Journal of Urology (2019) 6, 42e49; Antonarakis ES, et al. Prostate Cancer Prostatic Dis. 2016;19(3):231-41; Ponnumasy S, et al. Cancer Res. 2017;77(22):6282-98; Akora VK, et al. Cell. 2013 December 5;155(6):1309-22; Vlachosergios PJ, et al. Curr Oncol Rep. 2017;19(5):32; Khemlina et al. 2015 <u>https://www.sciencedirect.com/science/article/pii/S0305737215001462</u>; Cheng JNCCN 2019 https://jinccn.org/view/journals/jinccn/17/5/article-p515.xml

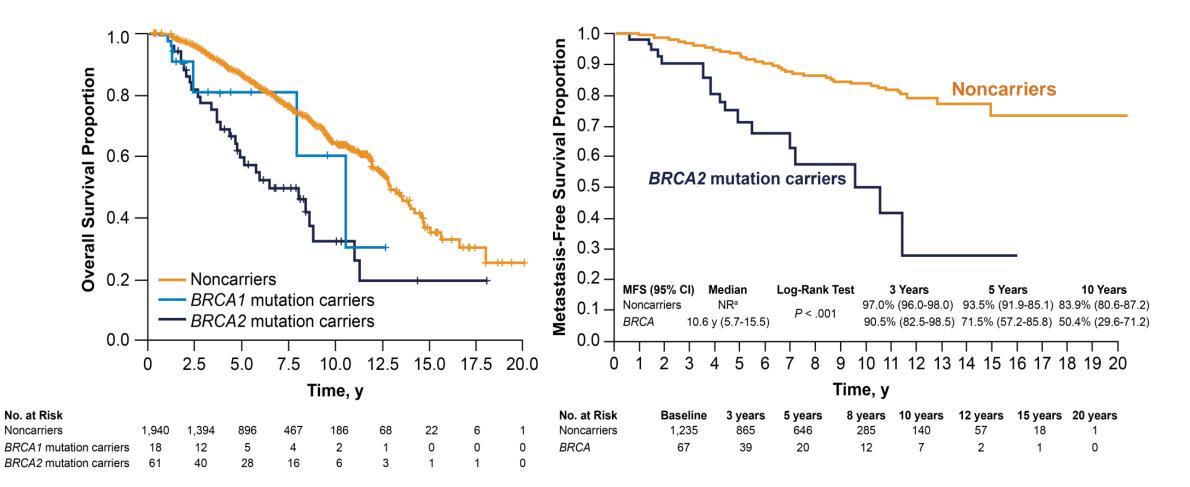
DNA REPAIR GENE ALTERATIONS (SOMATIC AND GERMLINE) ARE COMMON IN METASTATIC PROSTATE CANCER¹⁻³

Somatic

- <u>23%</u> of mCRPCs harbor DNA repair alterations
- The frequency of DNA repair alterations increases in metastatic disease vs. localized disease

RAD51C, 1% MRE11A. 1% MSH6, 1% -BRIP1.1% MSH2, 1% FAM175A, 1% GEN1, 2% -PMS2, 2% -NBN, 2% ATR. 2% RAD51D. 4% PALB2, 4% -BRCA2, 44% BRCA1, 7% CHEK2, 12% ATM, 13%

Germline


• <u>12%</u> of men with metastatic prostate cancer have a germline DNA repair defect

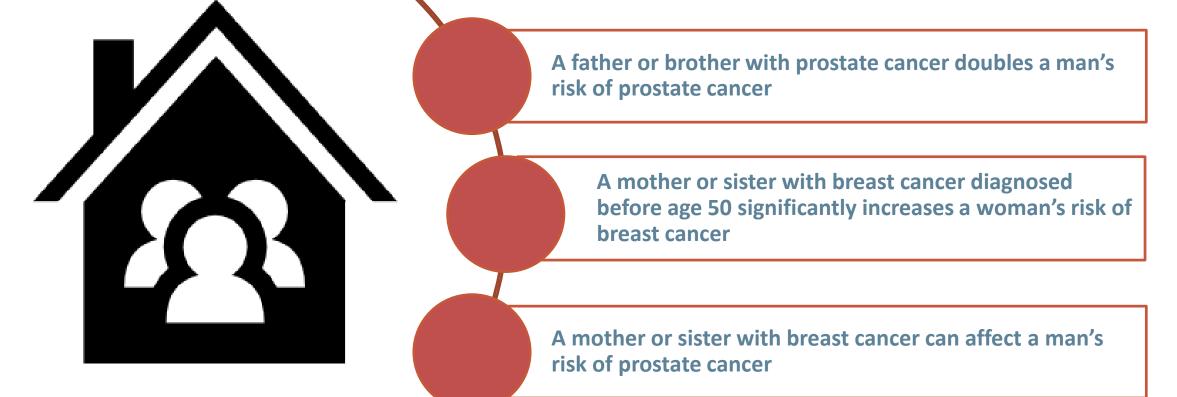
LOH, loss of heterozygocity

1. Robinson D, et al. Cell. 2015;161:1215-28; 2. Pritchard CC, et al. N Engl J Med. 2016;375:443-53; 3. Antonakaris ES, et al. Eur Urol. 2018;74(2):218-25.

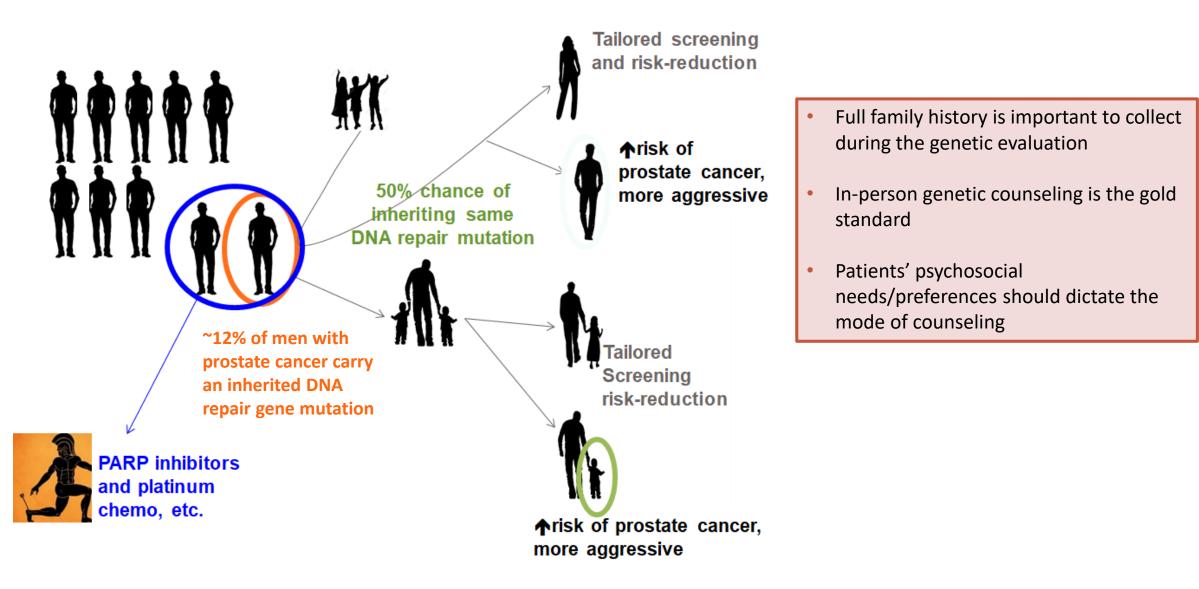
THE HEART OF MEDICAL EDUCATIO

BRCA2 CARRIERS WITH PROSTATE CANCER HAVE WORSE PROGNOSIS^{1,2}

^aMedian survival not reached after a median of 64-mo follow-up.


CI, confidence interval; No., number; NR; not reached; y, years

1. Castro E, et al. J Clin Oncol. 2013;31:1748-57; 2. Castro E, et al. Eur Urol. 2015;68:186-93.


THE HEART OF MEDICAL EDUCATIO

FAMILY HISTORY IS A REAL RISK FACTOR

NCCN (V 2.2020) GUIDELINES FOR GENETIC TESTING

Germline Testing	Somatic Tumor Testing
 Germline genetic testing is recommended for patients with prostate cancer and any of the following: High-risk, very high-risk, regional, or metastatic prostate cancer Ashkenazi Jewish ancestry Family history of high-risk germline mutations (eg, <i>BRCA1/2</i>, Lynch mutation) A positive family history of cancer 	 Recommend evaluating tumor for alterations in homologous recombination DNA repair genes, such as <i>BRCA1, BRCA2, ATM, PALB2, FANCA, RAD51D, CHEK2,</i> and <i>CDK12</i>, in patients with metastatic prostate cancer Can be considered in men with regional prostate cancer Testing for microsatellite instability-high (MSI-H) or dMMR is recommended in patients with CRPC, and should be considered in patients with regional or castration-naïve metastatic prostate cancer

• The international Philadelphia Prostate Cancer Consensus Conference 2019 guidelines recommended a similar germline testing strategy

Giri VN et al. J Clin Oncol. 2020;38(24):2798-2811. NCCN Guidelines for Prostate Cancer. Available from: www.nccn.org/about/news/ebulletin/ebulletindetail.aspx?ebulletinid=3852. Accessed October 2020.

CONCLUSIONS

- DDR mutations are a therapeutic target in metastatic prostate cancer
- **PARPi** work by the concept of "synthetic lethality"
- Both somatic and germline mutations related to DDR are common in metastatic prostate cancer
- Somatic and germline testing is recommended for all patients with metastatic prostate cancer and some patients with high-risk regional and locally-advanced prostate cancer

ROLE OF PARPi IN ADVANCED PROSTATE CANCER

Prof. Andrew J. Armstrong, MD

Professor of Medicine, Surgery, Pharmacology and Cancer Biology Director of Research Duke Cancer Institute's Center for Prostate and Urologic Cancers

DISCLOSURE

Prof. Andrew J. Armstrong has the following relevant financial relationships to disclose:

- Research/Consulting: Pfizer, Janssen, Astellas, AstraZeneca, Merck, Bayer, Dendreon, BMS, Constellation, Beigene, Genentech/Roche, Clovis consulting and research support (to Duke University for clinical trials/research)
- Stock/Patents/Salary: None

PROPERTIES OF PARP INHIBITORS

	Olaparib ¹	Veliparib ¹	Talazoparib ¹	Niraparib ¹	Rucaparib ¹	Pamiparib ²
MW	434.5	244.3	380.8	320.4	323.4	298.31
PARP1 IC ₅₀	5 nM	1.2 nM	0.56 nM	3.8 nM	0.65 nM	0.9 nM
PARP2 IC ₅₀	1 nM	0.41 nM	0.15 nM	2.1 nM	0.08 nM	0.5 nM
Trapping	++	+	++++	+++	++	++ ³

Pamiparib trapping potential estimated based on description as 'potent'.

IC50, half of maximal inhibitory concentration; MW, molecular weight; nM, nanomoles; PARP, poly-ADP ribose polymerase
1. Carney B, et al. Nat Commun. 2018;9:176; 2. Available from: <u>https://www.medchemexpress.com/Pamiparib.html</u>. Accessed, August 2020.
3. Pilie PG, et al. Clin Cancer Res. 2019;25:3759-71.

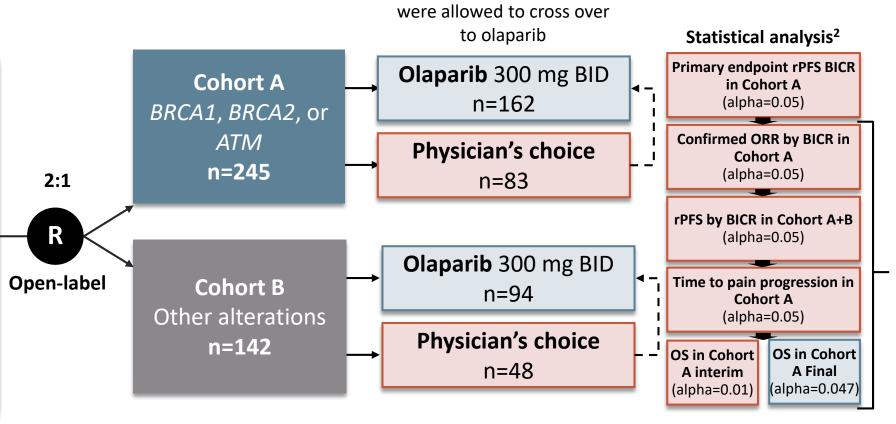
ONGOING SINGLE AGENT CLINICAL TRIALS OF PARPi IN mCRPC

37

PARPi	Clinical Trial No.	Study overview	Setting	Trial status
Olaparib	NCT01682772	Single arm, phase 2 trial of olaparib, predictive biomarker trial	Advanced castration resistant prostate cancer	Active, not recruiting
Olaparib	NCT02987543	Randomized phase 3 trial of olaparib vs enzalutamide or abiraterone	mCRPC who have failed prior treatment with a NHA with somatic HRR mutation	Active, not recruiting
Olaparib	NCT03047135	Single arm phase 2 trial of olaparib	Non-metastatic biochemically-recurrent PCa and a PSADT of ≤6 months and a minimum PSA of 1.0	Recruiting
Olaparib	NCT03263650	Randomized phase 2 of olaparib maintenance versus observation	AVPC 6 cycles of cabazitaxel and carboplatin before randomisation	Recruiting
Olaparib	NCT03434158	Single-arm phase 2 study of olaparib (IMANOL)	mCRPC \ge 6 cycles of docetaxel with CR/PR (RECIST 1.1) and PCWG3	Recruiting
Talazoparib	NCT03148795	Phase 2 single arm study of talazoparib	mCRPC previous taxane-based chemotherapy and progression on \geq 1 NHA	Active, not recruiting
Rucaparib	NCT02952534	Single arm phase 2 trail of rucaparib (TRITON2)	mCRPC with evidence of HRR gene deficiency	Active, not recruiting
Rucaparib	NCT02975934	Phase 3 trial of rucaparib vs physician's choice of abiraterone acetate, enzalutamide, or docetaxel. (TRITON3)	mCRPC with evidence of HRR gene deficiency	Recruiting
Rucaparib	NCT03413995	Single arm phase 2 trail of rucaparib (TRIUMPH)	mHSPC with germline DDR gene mutations	Recruiting
Rucaparib	NCT03533946	Single arm phase 2 trail of rucaparib (ROAR)	Hormone-sensitive PCa with 'BRCAness' gene defects	Recruiting
Niraparib	NCT02854436	Single arm phase 2 biomarker/safety/efficacy (Galahad)	mCRPC with progression taxane therapy	Active, not recruiting
Pamiparib	NCT03712930	Single arm phase 2 trial of pamiparib	mCRPC with HRR deficiency	Active, not recruiting

Humeniuk, Zhang, Armstrong Cancer 2017; Virtanen et al., Genes 2019;10:565; https://clinicaltrials.gov/ct2/show/NCT01682772; https://clinicaltrials.gov/ct2/show/NCT03987543; https://clinicaltrials.gov/ct2/show/NCT03047135; https://clinicaltrials.gov/ct2/show/NCT03263650; https://clinicaltrials.gov/ct2/show/NCT03434158; https://clinicaltrials.gov/ct2/show/NCT03148795; https://clinicaltrials.gov/ct2/show/NCT03434158; https://clinicaltrials.gov/ct2/show/NCT0395534; https://clinicaltrials.gov/ct2/show/NCT03434158; https://clinicaltrials.gov/ct2/show/NCT0343495; https://clinicaltrials.gov/ct2/show/NCT0343995; https://clinicaltrials.gov/ct2/show/NCT03533946; https://clinicaltrials.gov/ct2/show/NCT03712930

PROfound: STUDY DESIGN¹



Key Eligibility Criteria

- mCRPC with disease progression on prior NHA (abiraterone or enzalutamide)
- Alterations in ≥1 of any qualifying gene with a direct or indirect role in HRR

Stratification Factors

- Previous taxane
- Measureable disease

Upon BICR progression, physician's choice patients

- Primary endpoint: rPFS in cohort A (RECIST 1.1 and PCWG3 by BICR)
- Key secondary endpoints: rPFS (cohorts A+B); confirmed radiographic ORR in cohort A; time to pain progression in cohort A; OS in cohort A BICR, blinded independent central review; BID, twice daily; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer;

BICR, blinded independent central review; BID, twice daily; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; NHA, new hormonal agent; ORR, objective response rate; OS, overall survival; PCWG3, Prostate Cancer Working Group 3; R, randomized; RECIST, Response Evaluation Criteria in Solid Tumours; rPFS, radiographic progression-free survival

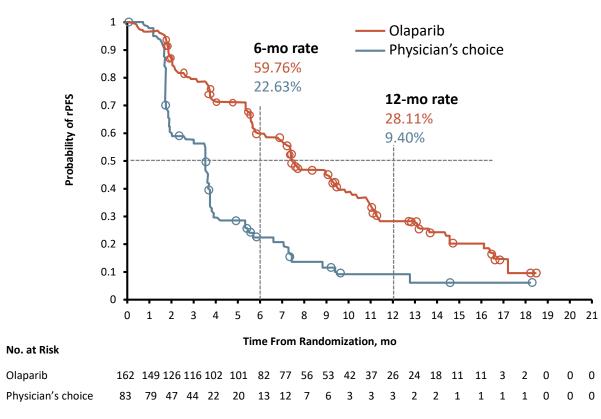
1. de Bono J, et al. N Engl J Med. 2020;382:2091-102; 2. ESMO 2020, Presentation ID 6100.

PROfound: PATIENT CHARACTERISTICS¹

	Cohort A		Cohorts A and B	
Characteristics	Olaparib (N=162)	Control (N=83)	Olaparib (N=256)	Control (N=131)
Median age at randomization, y (range)	68 (47-86)	67 (49-86)	69 (47-91)	69 (49-87)
Age ≥65 y at randomization, n (%)	108 (67)	60 (72)	174 (68)	97 (74)
Metastatic disease at initial diagnosis, n (%) Missing data	38 (23) 7 (4)	19 (23) 4 (5)	66 (26) 11 (4)	25 (19) 7 (5)
Gleason score ≥8, n/total n (%)	105/157 (67)	54/80 (67)	183/251 (73)	95/127 (75)
Patients with alterations in a single gene, n (%) BRCA1 BRCA2 ATM CDK12	8 (5) 80 (49) 60 (37) N/A	5 (6) 47 (57) 24 (29) N/A	8 (3) 81 (32) 62 (24) 61 (24)	5 (4) 47 (36) 24 (18) 28 (21)
Median PSA at baseline (IQR), mcg/L	62.2 (21.9-280.4)	112.9 (34.3-317.1)	68.2 (24.1-294.4)	106.5 (37.2-326.6)
Measurable disease at baseline, n (%)	95 (59)	46 (55)	149 (58)	72 (55)

IQR, interquartile range; NA, not available; PSA, prostate-specific antigen; y, years 1. de Bono J, et al. N Engl J Med. 2020;382:2091-102.

PROfound: PATIENT CHARACTERISTICS¹ (CONT'D)

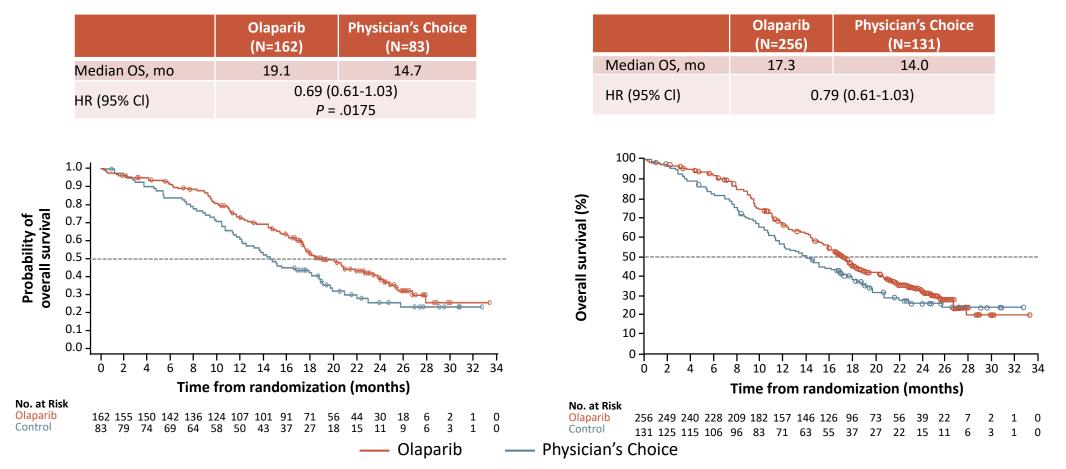

	Coho	ort A	Cohorts A and B	
Characteristic	Olaparib (N=162)	Control (N=83)	Olaparib (N=256)	Control (N=131)
Metastases at baseline, n (%) Bone only Visceral: lung or liver Other	57 (35) 46 (28) 49 (30)	23 (28) 32 (39) 23 (28)	86 (34) 68 (27) 88 (34)	38 (29) 44 (34) 41 (31)
ECOG performance status, n (%) 0 1 2 Missing data	84 (52) 67 (41) 11 (7) 0	34 (41) 46 (55) 3 (4) 0	131 (51) 112 (44) 13 (5) 0	55 (42) 71 (54) 4 (3) 1 (1)
Previous new hormonal agent, n (%) Enzalutamide only Abiraterone only Enzalutamide and abiraterone	68 (42) 62 (38) 32 (20)	40 (48) 29 (35) 14 (17)	105 (41) 100 (39) 51 (20)	54 (41) 54 (41) 23 (18)
Previous taxane use, n (%) Docetaxel only Cabazitaxel only Docetaxel and cabazitaxel Paclitaxel only	106 (65) 74 (46) 2 (1) 29 (18) 1 (<1)	52 (63) 32 (49) 0 20 (24) 0	170 (66) 115 (45) 3 (1) 51 (20) 1 (<1)	84 (64) 58 (44) 0 26 (20) 0

ECOG, Eastern Cooperative Oncology Group 1. de Bono J, et al. N Engl J Med. 2020;382:2091-102.

PROfound PRIMARY ENDPOINT: rPFS (COHORT A)^{1,2}

rPFS BY BICR IN PATIENTS WITH ALTERATIONS IN BRCA1, BRCA2, OR ATM (COHORT A)

	Olaparib (N=162)	Physician's Choice (N=83)	
Events, %	106 (65.4)	68 (81.9)	
Median PFS, mo	7.39	3.55	
HR (95% Cl)	0.34 (0.25-0.47) <i>P</i> <.001		


CI, confidence interval; HR, hazard ratio; mo, months; PFS, progression-free survival 1. Hussain M, et al. ESMO 2019. Abstract LBA12_PR; 2. de Bono J, et al. N Engl J Med. 2020;382:2091-102.

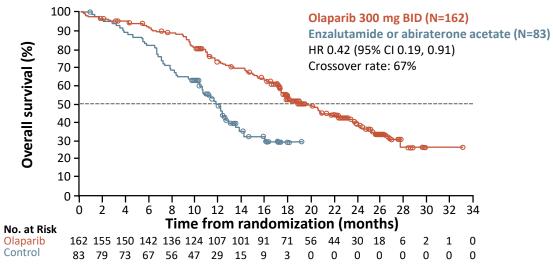
PROfound: FINAL PRE-SPECIFIED OS^{1,2} First survival advantage with a PARP inhibitor

COR2ED[®] THE HEART OF MEDICAL EDUCATION

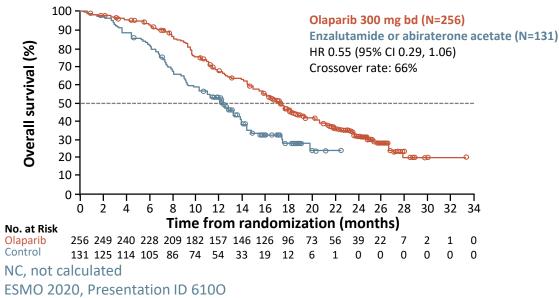
COHORTS A + B^b

COHORT A^a

^aPopulation used for EMA 'BRCA1/2 approval' recommendation;


^bPopulation used for the FDA 'deleterious germline or somatic HRR mutation' approval. 66% crossed over to olaparib

BRCA1/2, breast cancer type 1/2 susceptibility protein; EMA, European Medicines Agency; FDA, United States Food & Drug Administration; No., number 1. ESMO 2020, Presentation ID 6100; 2. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208558s014lbl.pdf.


PROfound OUTCOMES

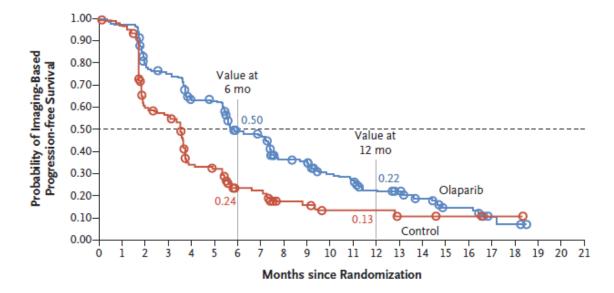
COHORT A OS WITH CROSSOVER ADJUSTMENT

COHORT A +B WITH CROSSOVER ADJUSTMENT

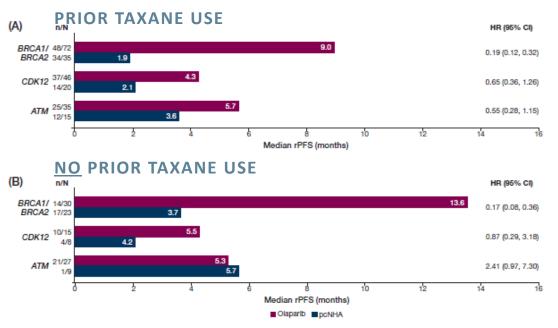
EXPLORATORY GENE-LEVEL ANALYSIS OF OS

	Subgroup	Olaparib n/N	Control n/N	Overall population	HR (95% CI)
	Alteration in any single HRR gene	148/239	81/120		0.79 (0.60-1.04)
	<i>BRCA1</i> (n=13)	5/8	5/5	F€-1	0.42 (0.12-1.53)
Cohort A	<i>BRCA2</i> (n=128)	39/81	32/47	⊢ <mark>-</mark> i	0.59 (0.37-0.95)
	<i>ATM</i> (n=86)	39/62	15/24	⊢ <mark>⊢</mark> ⊣	0.93 (0.53-1.75)
	<i>BARD1</i> (n=1)	0/0	1/1	NC	NC
	<i>BRIP1</i> (n=3)	1/2	1/1	NC	NC
	<i>CDK12</i> (n=89)	47/61	18/28	<mark>⊢</mark> •+	0.97 (0.57-1.71)
	<i>CHEK1</i> (n=2)	1/1	0/1	NC	NC
Cohort B	<i>CHEK2</i> (n=12)	4/7	3/5	⊢	0.87 (0.19-4.44)
Conort B	<i>PALB2</i> (n=4)	2/3	1/1	NC	NC
	<i>PPP2R2A</i> (n=10)	5/6	2/4	∳ ⊷i	5.11 (1.10-35.73)
	<i>RAD51B</i> (n=5)	2/4	1/1	NC	NC
	<i>RAD51D</i> (n=1)	1/1	0/0	NC	NC
	<i>RAD54L</i> (n=5)	2/3	2/2	NC	NC
			0.	060.25 1 4 16 64	
			Olanar	ib better Control better	

Olaparib better Control better


Patients with tumours harbouring a *BRCA1* or *BRCA2* alteration appeared to derive the greatest OS benefit from olaparib

Data are reported only for patients with an alteration in a single gene. HR and CI values were not calculated for subgroups in which fewer than five survival events occurred; none of the enrolled patients harboured alterations in *FANCL* or *RAD51C*. The sizes of the circles are proportional to the number of events.


SECONDARY OUTCOMES

IMAGING-BASED PROGRESSION-FREE SURVIVAL IN COHORTS A AND B

EXPLORATORY SUBGROUP ANALYSES OF rPFS IN PATIENTS WITH ALTERATIONS IN BRCA1/BRCA2, CDK12 AND ATM BY (A) PRIOR TAXANE USE AND (B) NO PRIOR TAXANE USE

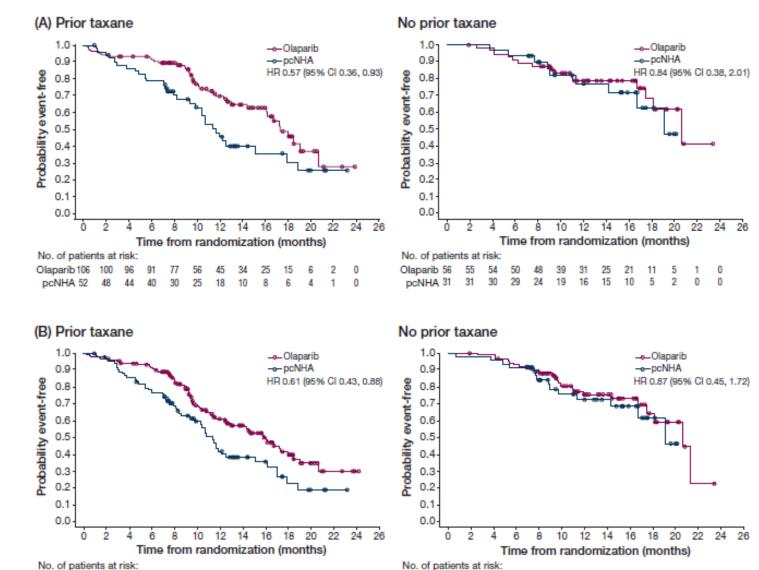
OUTCOMES IN CHEMO-NAÏVE mCRPC

Olaparib 170

DCNHA 84

164 156 149 117 82

79 70 63 46


65 51

34 24 16 13

34

 Kaplan–Meier estimates of OS in patients in (A)
 Cohort A and (B) the overall population
 (Cohorts A+B) by prior
 taxane status

Olaparib 86

DCNHA 47

84 78 70 52

45 43

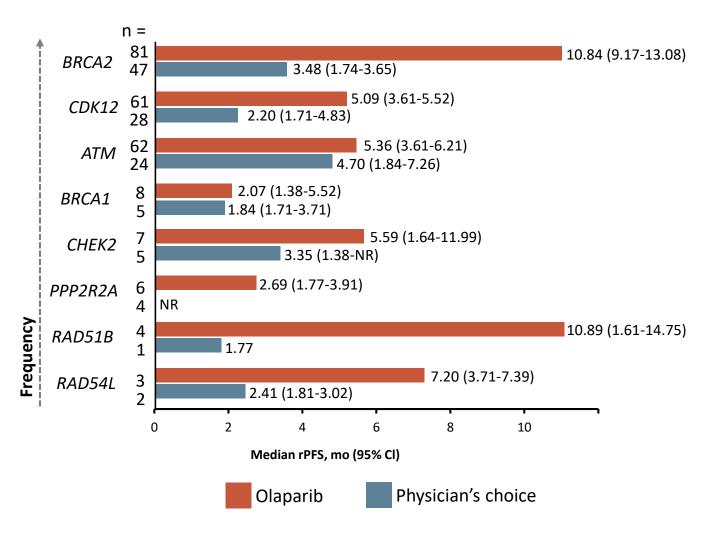
32

24

12

41

26 22 18

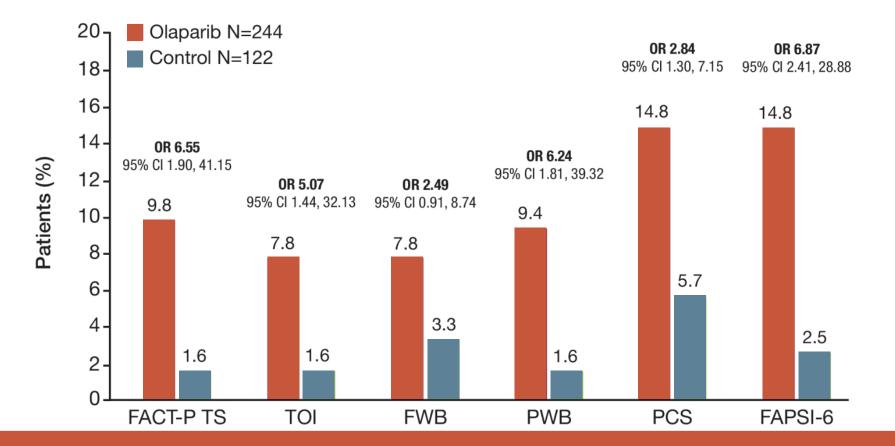

33

85

pcNHA, physician's choice of new hormonal agent De Bono, et al ASCO 2020; abstract 134.

PROfound: EXPLORATORY GENE-BY-GENE rPFS ANALYSIS^{1,2}

- 7/15 genes had alteration frequencies too low for descriptive statistics (<5 patients)¹
- 97% of patients were randomized based on alterations in 8/15 single genes¹
- There is evidence of clinical activity of olaparib in patients with alterations in genes other than *BRCA1* or *BRCA2*¹
- Gene-level analysis is complex and exploratory, and comparisons may be confounded by multiple factors¹



NR, not reported

 Available from: https://www.urotoday.com/conference-highlights/esmo-2019/esmo-2019-prostate-cancer/115401-esmo-2019-profound-phase-3-study-of-olaparib-vsenzalutamide-or-abiraterone-for-metastatic-castration-resistant-prostate-cancer-with-homologous-recombination-repair-gene-alterations.html.
 Hussain M, et al. ESMO 2019. Abstract LBA12_PR.

PROfound (COHORTS A+B): HRQoL¹

A higher proportion of patients in the olaparib arm reported improvement in HRQoL

FACT-P TS, Functional Assessment of Cancer Total Score; FAPSI-6, FACT Advanced Prostate Symptom Index; FWB, functional wellbeing; HRQoL, health-related quality of life; PCS, prostate cancer subscale; PWB, physical wellbeing; OR, odds ratio; TOI, trial outcome index. 1. Thiery-Vuillemin A, et al. ASCO 2020. Abstract 5539.

PROfound SAFETY¹

	Olapa	rib (N=256)	Control (N=130)	
Adverse Event ^a	All Grades (n, %)	Grade ≥3 (n, %)	All Grades (n, %)	Grade ≥3 (n, %)
Any Anemia ^a Nausea Fatigue or asthenia Decreased appetite Diarrhea Vomiting Constipation Back pain Peripheral edema Cough Dyspnea Arthralgia Urinary tract infection	244 (95) 119 (46) 106 (41) 105 (41) 77 (30) 54 (21) 47 (18) 45 (18) 35 (14) 32 (12) 28 (11) 26 (10) 24 (9) 18 (7)	$ \begin{array}{c} 130 (51) \\ 55 (21) \\ 3 (1) \\ 7 (3) \\ 3 (1) \\ 2 (<1) \\ 6 (2) \\ 0 \\ 2 (<1) \\ 0 \\ 2 (<1) \\ 0 \\ 0 \\ 6 (2) \\ 1 (<1) \\ 4 (2) \end{array} $	114 (88) 20 (15) 25 (19) 42 (32) 23 (18) 9 (7) 16 (12) 19 (15) 15 (12) 10 (8) 3 (2) 4 (3) 14 (11) 15 (12)	49 (38) 7 (5) 0 7 (5) 1 (<1) 0 1 (<1) 0 2 (2) 0 0 0 0 0 0 5 (4)
Interruption of intervention because of adverse event	115 (45)	N/A	24 (18)	N/A
Dose reduction because of adverse event	57 (22)	N/A	5 (4)	N/A
Discontinuation of intervention because of adverse event	46 (18)	N/A	11 (8)	N/A
Death because of adverse event	10 (4)	N/A	5 (4)	N/A

^aIncludes anemia, decreased Hb level, decreased red cell count, decreased Hct level, erythropenia, macrocytic anemia, normochromic anemia, normochromic normocytic anemia, and normocytic anemia; anemia reported in 46% of patients, and decreased Hb level reported in <1%. Hb, hemoglobin; HCT, hematocrit; N/A, not available

1. de Bono J, et al. N Engl J Med. 2020;382:2091-102.

COMMON SIDE EFFECTS OF OLAPARIB^{1,2}

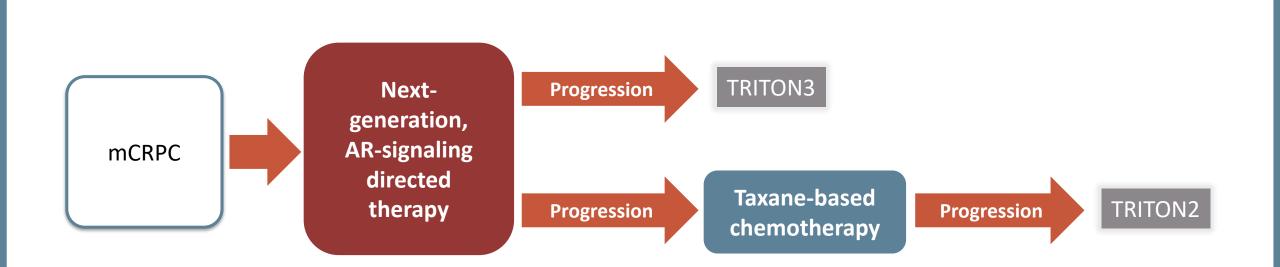
Anemia
Fatigue
Nausea (vomiting rare)
Decreased appetite
Diarrhea
Thrombocytopenia
Creatinine elevation
Cough and dyspnea
Rare but serious: MDS/AML; pneumonitis; PE/thromboembolism

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; PE, pulmonary embolism de Bono J, et al. N Engl J Med. 2020;382:2091-102. Lynparza 50 mg hard capsules. SmPC. Revised July 2020.

In May 2020, based on data from the PROfound study, the FDA granted full approval olaparib for the treatment of patients with deleterious or suspected germline or somatic HRR^a gene-mutated mCRPC, who have progressed following prior treatment with enzalutamide or abiraterone^{1,b}

^aBRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L. ^bSelect patients for therapy based on two FDA-approved companion diagnostic tests: BRACAnalysis CDx and FoundationOne CDx.

1. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer.

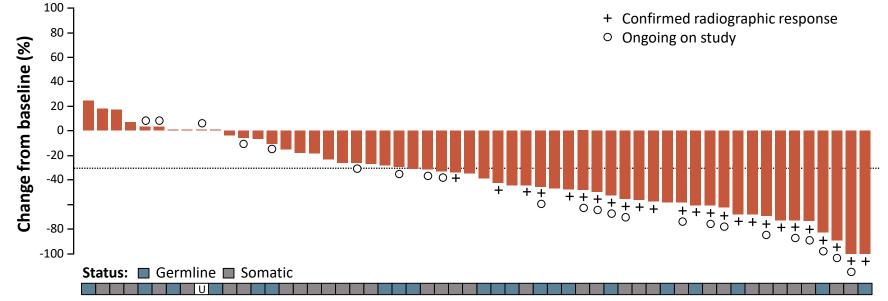

EMA RECOMMENDED APPROVAL: OLAPARIB FOR mCRPC WITH BRCA1/2-MUTATIONS

Olaparib is indicated as monotherapy for the treatment of adult patients with mCRPC and BRCA1/2-mutations (germline and/or somatic) who have progressed following prior therapy that included a new hormonal agent.¹

1. https://www.ema.europa.eu/en/medicines/human/summaries-opinion/lynparza-0

RUCAPARIB: TRITON2 AND TRITON3 — STUDY DESIGNS^{1,2}

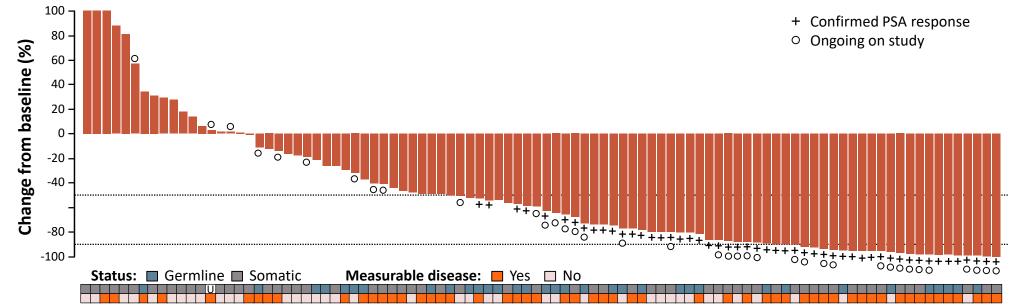
HRR-deficiency is defined by a deleterious alteration in *BRCA1, BRCA2, ATM*, or 12 other HRR genes (*BARD1, BRIP1, CDK12, CHEK2, FANCA, NBN, PALB2, RAD51, RAD51B, RAD51C, RAD51D, RAD54L*)


THE HEART OF MEDICAL EDUCATI

TRITON2: OBJECTIVE RESPONSES¹

		DDR Gene					
	BRCA 1/2 (n=57)	ATM (n=21)	<i>CDK12</i> (n=9)	<i>CHEK2</i> (n=5)	Other (n=13)		
ORR, n (%) [95% Cl]	25 (43.9) [30.7-57.6]	2 (9.5) [1.2-30.4]	0 [0.0-33.6]	0 [0.0-52.2]	5 (38.5) [13.9-68.4]		
CR, n (%)	3 (5.3)	0	0	0	1 (7.7)		
PR, n (%)	22 (38.6)	2 (9.5)	0	0	4 (30.8)		
SD, n (%)	26 (45.6)	10 (47.6)	5 (55.6)	3 (60.0)	6 (46.2)		
PD, n (%)	5 (8.8)	8 (38.1)	3 (33.3)	2 (40.0)	1 (7.7)		
NE, n (%)	1 (1.8)	1 (4.8)	1 (11.1)	0	1 (7.7)		

BEST CHANGE FROM BASELINE IN SUM OF TARGET LESION IN PATIENTS WITH BRCA1/2 ALTERATION (N=56)

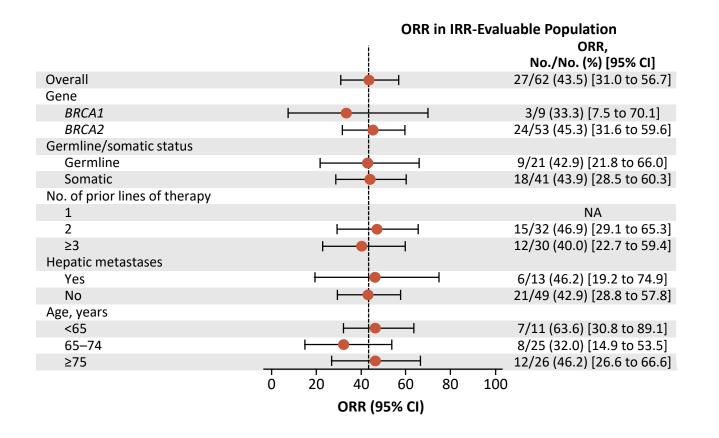

CR, complete response; DDR, DNA damage repair; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease 1. Abida W, et al. ESMO 2019. Abstract 846PD7

TRITON2: PSA RESPONSES¹

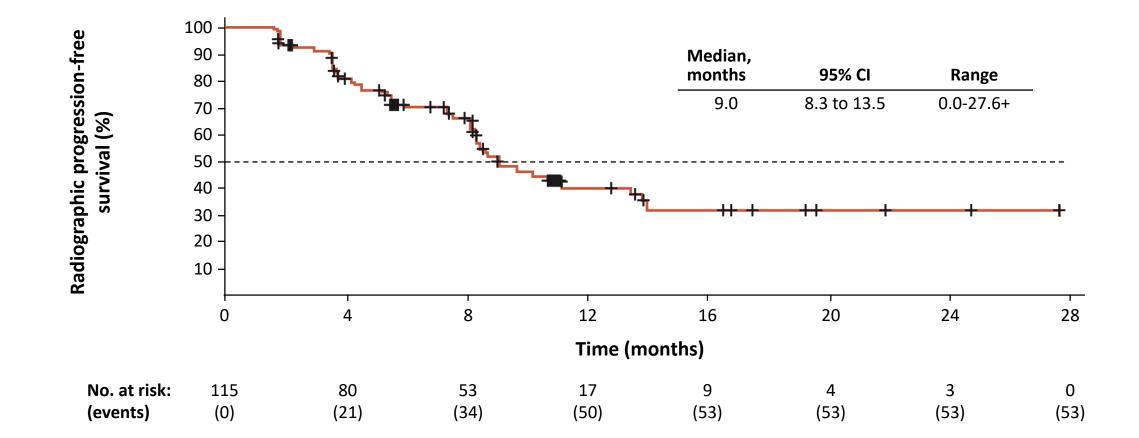
		DDR Gene					
	BRCA 1/2	ATM	CDK12	СНЕК2	Other		
PSA response rate, n/N (%) [95% CI]							
All evaluable patients	51/98 (52.0) [41.7-62.2]	2/57 (3.5) [0.4-12.1]	1/14 (7.1) [0.2-33.9]	1/7 (14.3) [0.4-57.9]	5/14 (35.7) [12.8-64.9]		
With measurable disease	34/57 (59.6) [45.8-72.4]	2/21 (9.5) [1.2-30.4]	1/9 (11.1) [0.3-48.2]	1/5 (20.0) [0.5-71.6]	5/13 (38.5) [13.9-68.4]		
With no measurable disease	17/41 (41.5) [26.3-57.9]	0/36 (0) [0.0-9.7]	0/5 (0) [0.0-52.2]	0/2 (0) [0.0-84.2]	0/1 (0) [0-97.5]		
Median time to PSA progression, mo [95% CI]	6.5 [5.7-7.5]	3.1 [2.8-3.7]	3.5 [2.8-4.6]	5.6 [2.8-NR]	5.8 [2.8-NR]		

BEST CHANGE FROM BASELINE IN PSA PATIENTS WITH *BRCA1/2* **ALTERATION (N=96)**

1. Abida W, et al. ESMO 2019. Abstract 846PD.


TRITON2 PRIMARY ENDPOINT OBJECTIVE RESPONSE RATE¹

Response	Investigator-Evaluable Population (n=65)	IRR-Evaluable Population (n=62)
Confirmed ORR, No (%; 95% CI)	33 (50.8; 38.1 to 63.4)	27 (43.5; 31.0 to 56.7)
CR	4 (6.2)	7 (11.3)
PR	29 (44.6)	20 (32.3)
SD	25 (38.5)	28 (45.2)
PD	6 (9.2)	6 (9.7)
NE	1 (1.5)	1 (1.6)
	Overall Efficacy (n=11	
Confirmed PSA response rate, No. (5;95% CI)	63 (54.8;45.2	to 64.1)


IRR, Independent radiological review1. Abida W, et al. Journal of Clinical Oncology 2020 DOI https://doi.org/10.1200/JCO.20.01035

TRITON2: SUBGROUP ANALYSIS OF OBJECTIVE RESPONSE RATE¹

TRITON2: RADIOGRAPHIC PFS¹

1. Abida W, et al. Journal of Clinical Oncology 2020 DOI https://doi.org/10.1200/JCO.20.01035

TRITON2: RESPONSE BY NON-BRCA DDR GENE ALTERATIONS^{1,a}

		By DDR Gene	Group	
	<i>ATM</i> (n=49)	<i>CDK12</i> (n=15)	<i>CHEK2</i> (n=12)	Other ^b (n=14)
Confirmed investigator-assessed objective	2/19 (10.5)	0/10 (0)	1/9 (11.1)	4/14 (28.6)
response ^c	(1.3-33.1)	(0.0-30.8)	(0.3-48.2)	(8.4-58.1)
CR	0/19 (0.0)	0/10 (0)	0/9 (0)	1/14 (7.1)
PR	2/19 (10.5)	0/10 (0)	1/9 (11.1)	3/14 (21.4)
SD	9/19 (47.4)	6/10 (60.0)	6.9 (66.7)	8/14 (57.1)
PD	7/19 (36.8)	3/10 (30.0)	2/9 (22.2)	1/14 (7.1)
NE	1/19 (5.3)	1/10 (10.0)	0/9 (0)	1/14 (7.1)
6-month clinical benefit rate ^d	12/42 (28.6)	3/15 (20.0)	3/8 (37.5)	6/11 (54.5)
	(15.7-44.6)	(4.3-48.1)	(8.5-75.5)	(23.4-83.3)
12-month clinical benefit rate ^e	3/18 (16.7)	1/14 (7.1)	0/5 (0)	3/8 (37.5)
	(3.6-41.4)	(0.2-33.9)	(0.0-52.2)	(8.5-75.5)
Confirmed PSA response ^f	2/49 (4.1)	1/15 (6.7)	2/12 (16.7)	5/14 (35.7)
	(0.5-14.0)	(0.2-31.9)	(2.1-48.4)	(12.8-64.9)
Median time to PSA progression, mo (95% CI)	3.1 (2.8-4.6)	3.2 (2.8-4.6)	7.4 (2.8-7.4)	11.0 (3.0-NR)

^aVisit cutoff date: April 29, 2019. Data are n/N (%) (95% CI) unless stated otherwise. ^bIncludes patients with an alteration in *FANCA* (n=4), *NBN* (n=4), *BRIP1* (n=2), *PALB2* (n=2), *RAD51* (n=1), *and/or RAD54L* (n=1). ^cPer modified RECIST/PCWG3 criteria; includes patients who had measurable disease at baseline per the investigator and \geq 16 weeks of follow-up. ^dProportion of patients without radiographic progression per RECIST/PCWG3 criteria who were ongoing with treatment at 6 months. ^eProportion of patients without radiographic progression per RECIST/PCWG3 criteria who were ongoing with treatment at 8 months. ^eProportion of patients without radiographic progression per RECIST/PCWG3 criteria who were ongoing with treatment at 2 months. ^fDefined as \geq 50% reduction in PSA from baseline; includes patients who had \geq 16 weeks of follow-up.

1. Abida W, et al. Clin Cancer Res. 2020 Feb 21 [Epub ahead of print].

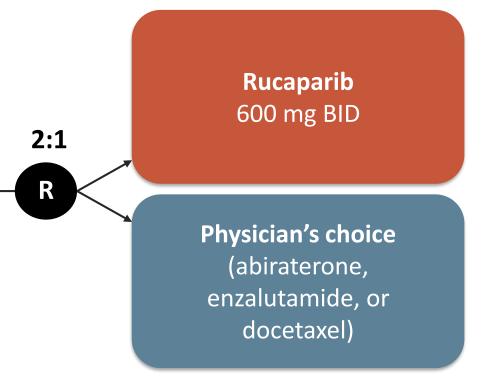
COMMON SIDE EFFECTS OF RUCAPARIB

Anemia
Fatigue, asthenia
Nausea/vomiting
Decreased appetite
Diarrhea or constipation
Thrombocytopenia
Increased AST/ALT and/or creatinine
Rash
Rare but serious: MDS/AML; fetal teratogenicity

1. Abida W, et al. Clin Cancer Res. 2020 Feb 21 [Epub ahead of print]; 2. Rucabra. SmPC. May 2019.

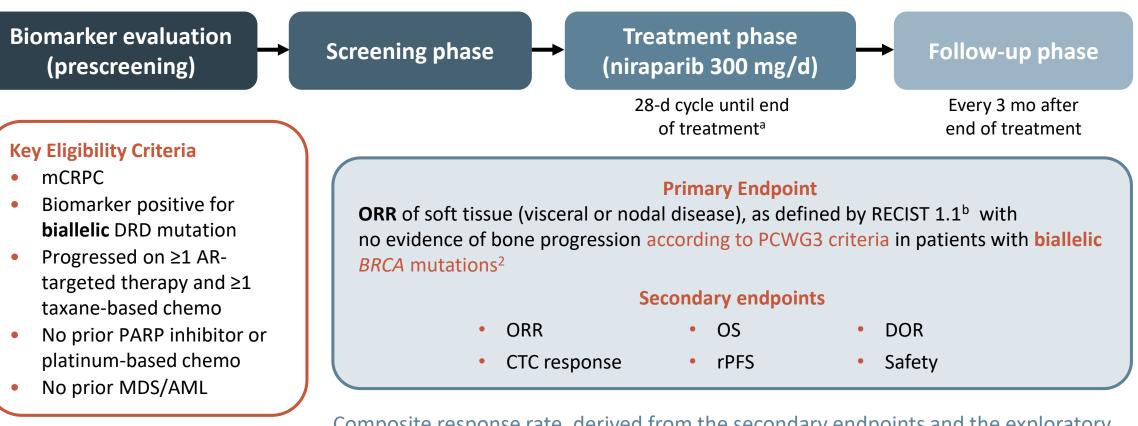
In May 2020, based on data from the TRITON2 study, the FDA granted accelerated approval to rucaparib for the treatment of patients with deleterious BRCA1/2 (germline and/or somatic)-associated mCRPC, who have been treated with an androgen receptor-directed therapy and a taxane-based chemotherapy.¹

The TRITON3 study is underway and recruiting patients with mCRPC and homologous recombination gene deficiency.²


1. https://www.fda.gov/drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate. 2. https://clinicaltrials.gov/ct2/show/NCT02975934.

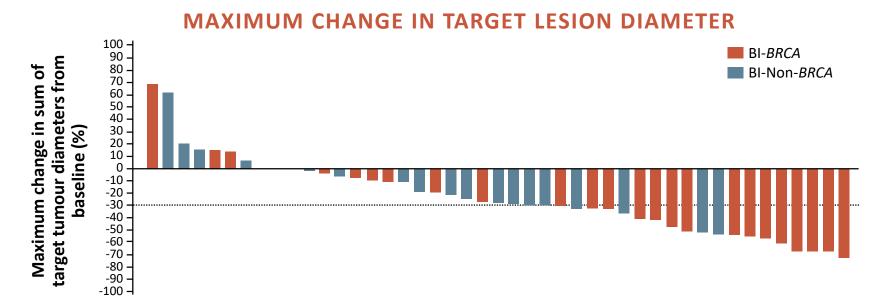
TRITON3: STUDY DESIGN^{1,2}

Key Eligibility Criteria


- mCRPC
- Deleterious germline or somatic *BRCA1*, *BRCA2*, or *ATM* mutation
- Progression on AR-directed therapy in the mCRPC setting
- No prior PARPi treatment or chemotherapy for mCRPC

Primary endpoint: radiographic PFS

PHASE 2 GALAHAD: NIRAPARIB IN PREVIOUSLY TREATED mCRPC WITH BIALLELIC DDR MUTATIONS^{1,2}


Composite response rate, derived from the secondary endpoints and the exploratory endpoint of CTC conversion, was defined as ORR by RESIST 1.1, or conversion CTC from $\geq 5/7.5$ mL to < 5/7.5 mL of blood, or $\geq 50\%$ decline in PSA level.²

CTC, circulating tumor cell; d, days; DOR, duration of objective response; DRD; DNA-repair gene deficit ^aTreatment continued until disease progression, unacceptable toxicity, or death. ^bInvestigator assessed. <u>https://clinicaltrials.gov/ct2/show/NCT02854436</u>. Annals of Oncology (2019) 30 (suppl_5): v851-v934. 10.1093/annonc/mdz394

BEST OVERALL RESPONSE IN BIALLELIC DRD PATIENTS WITH MEASURABLE DISEASE AT BASELINE

Response, n (%)	Patients with measurable disease (n=51)					
	BRCA (n=29)	Non-BRCAa (n=22)				
CR	1 (3%)	0				
PR	11 (38%)	2 (9%)				
SD	7 (24%)	10 (45%)				
PD	7 (24%)	7 (32%)				

PHASE 2 GALAHAD: ORR, PSA RESPONSE, CTC RESPONSE¹

^aATM, FANCA, PALB2, CHEK2, BRIP1, or HDAC2 assayed, not all represented in non-BRCA patients. ^b Investigator-assessed.

RR, response rate

1. Smith MR, et al. J Clin Oncol. 2019;37(Suppl7):202.

THE HEART OF MEDICAL EDUCATIO

TALAPRO-1: TALAZOPARIB IN mCRPC WITH DDRM¹

Eligibility criteria

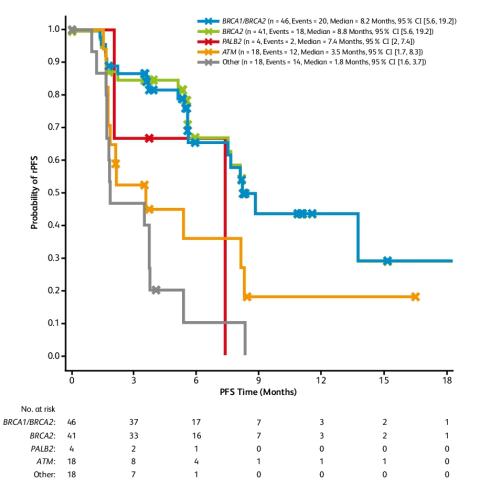
- Age ≥18 y
- Progressive mCRPC
- Measurable soft tissue disease
- 1-2 previous chemotherapy regimens (≥1 taxane-based regimen) for mCRPC
- Progressed on ≥ 1 NHT^a for mCRPC
- DDRm^b likely to sensitize to PARPi
 N = ~100

Primary endpoint: ORR

 Talazoparib 1 mg daily (0.75 mg, if moderate renal impairment)
 Until radiographic progression, unacceptable toxicity, consent withdrawal, or death

Secondary endpoints: Time to OR, DOR, PSA decrease ≥50%, CTC count conversion (to CTC = 0 and <5 per 7.5 mL blood) time to PSA progression, rPFS, OS, safety

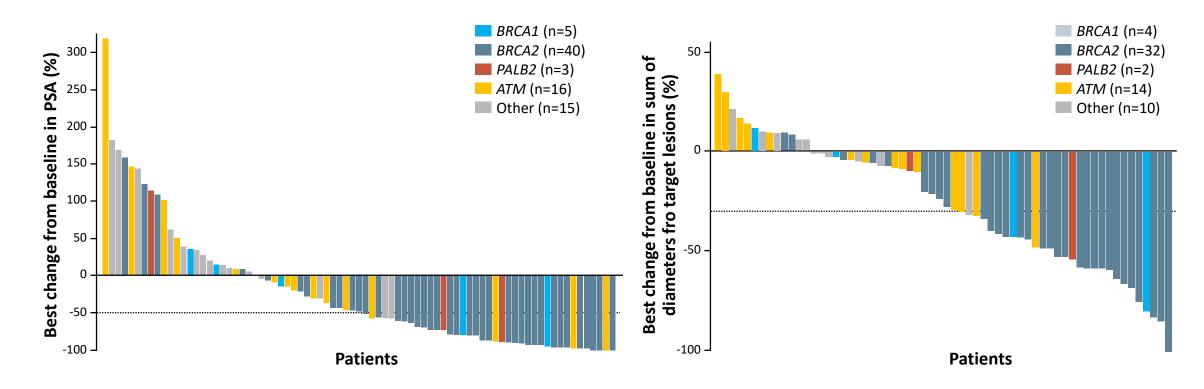
^aEnzalutamide/abiraterone acetate. ^bDDRm are defined as known/likely pathogenic variants or homozygous deletions in: *ATM, ATR, BRCA1/2, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C.* NHT, novel hormonal therapy; OR, objective response 1. https://meetinglibrary.asco.org/record/188251/abstract.


% (response/n)	<i>BRCA1/2</i>	<i>BRCA2</i>	<i>PALB2</i>	<i>ATM</i>	Other	Total
	(n=46)	(n=41)	(n=4)	(n=18)	(n=18)	(N=86)
Composite	71.7	75.6	50.0	22.2	11.1	47.7
Response	(33/46)	(31/41)	(2/4)	(4/18)	(2/18)	(41/86)
ORR	41.5	40.5	33.3	11.8	0	26.7
	(17/41)	(15/37)	(1/3)	(2/17)	(0/14)	(20/75)
Confirmed CR	4.9	5.4	0	5.9	0	4.0
	(2/41)	(2/37)	(0/3)	(1/17)	(0/14)	(3/75)
Confirmed PR	36.6	35.1	33.3	5.9	0	22.7
	(15/41)	(13/37)	(1/3)	(1/17)	(0/14)	(17/75)
SD ≥6 mo	2.4	2.7	0	11.8	0	4.0
	(1/41)	(1/37)	(0/3)	(2/17)	(0/14)	(3/75)
PSA decline ≥50%	60.9	63.4	50.0	5.6	5.6	37.2
from baseline	(28/46)	(26/41)	(2/4)	(1/18)	(1/18)	(32/86)
CTC conversion	93.8	93.8	0	50.0	25.0	70.4
≥5 to <5	(15/16)	(15/16)	(0/1)	(3/6)	(1/4)	(19/27)

In this interim analysis (Dec 2019) of TALAPRO-1, talazoparib monotherapy demonstrated antitumor activity in mCRPC patients with DDR alterations who have previously received taxane therapy and NHT with a confirmed overall ORR of 26.7%. Efficacy was most notable in the subset of patients with mCRPC whose tumors harbored *BRCA1/2* alterations, who had a confirmed ORR of 41.5%.

Talazoparib monotherapy was generally well tolerated. No new safety signals were observed in this patient population compared with the known safety profile of talazoparib.

^aDDR-deficient population (N=86) includes DDR patients who received treatment for ≥16 weeks.
1. de Bono J, et al. ASCO 2020. Abstract 5566.


rPFS BY DDR ALTERATION BY BICR^a

BEST CHANGE FROM BASELINE IN PSA^a

BEST CHANGE FROM BASELINE IN RECIST^a

^aDDR-deficient population includes DDR patients who received treatments for \geq 16 weeks; PSA, n=79 and RECIST, n=62.

1. de Bono J, et al. ASCO 2020. Abstract 5566.

MUTATION STATUS AND SENSITIVITY TO PARP INHIBITORS¹

Efficacy of PARP Inhibitors in patients with deleterious BRCA1 versus BRCA2 mutations

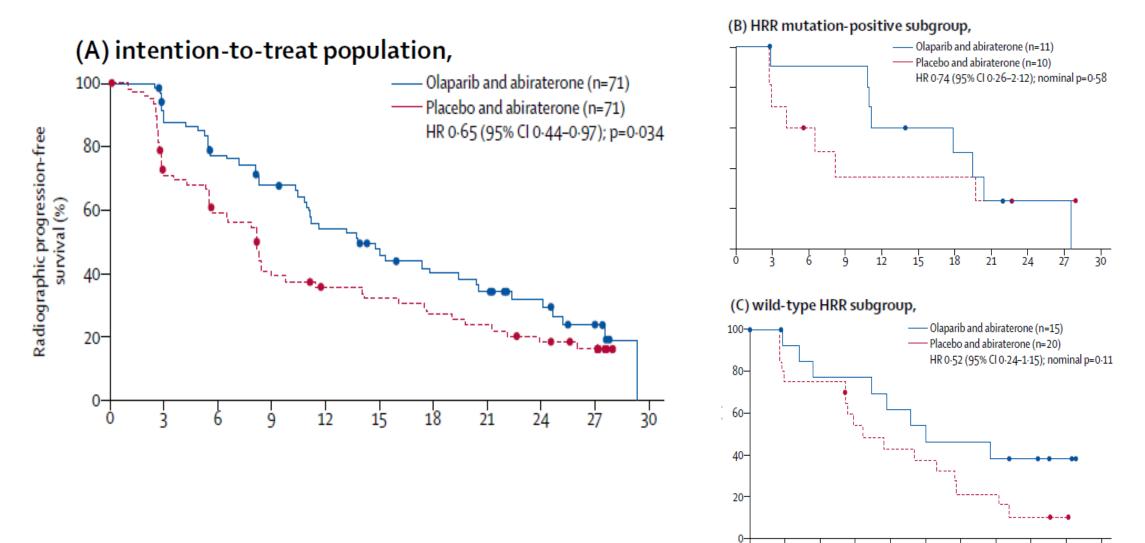
	Olaparib						Rucaparib					
	TOPARP-A ²		TOPARP-A ² TOPA		DPARP-B ³ PROfo		TRITON2 ⁵		TALAPRO-16		Pooled Data	
	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2	BRCA1	BRCA2
Outcome	n/N	n/N	n/N	n/N (95% Cl)	n/N (95% Cl)	n/N (95% CI)	n/N (95% CI)	n/N (95% CI)	n/N	n/N (95% Cl)	n/N (95% CI)	n/N (95% CI)
PSA ₅₀	0/1	7/7	1/2	22/28	NR	NR	2/13	61/102	2/5	26/41	5/21 (23.8) (4.4 to 43.2)	116/178 (65.2) (58.2 to 72.2)
ORR	NE	5/5	0/1	11/20	0/5	24/43	3/9	24/53	2/4	15/37	5/19 (26.3) (5.1 to 47.5)	79/158 (50.0) (42.2 to 57.8)
rPFS, months	NE	NR	NE	8.2 (5.5 to 13.0)	2.1 (1.4 to 5.5)	10.8 (9.2 to 13.1)	8.7 (1.8 to 10.7)	9.7 (8.3 to 14.0)	NR	8.8 (5.6 to 19.2)	4.1 (1.0 to 16.8)	10.1 (8.9 to 11.6)
No. of patients evaluable for rPFS				30	8	81	13	102		41	21	254

- Explanation of the lower sensitivity of BRCA1 mutation mCRPC will require more patient data due to a low mutation prevalence¹
- Currently, both olaparib and rucaprib should be considered for patients with either BRCA2 or BRACA1 mutations¹

Availability of genomically selected therapies for these patients represents a major step forward
 Note. n/N denotes the number of patients who achieved a given end point out of the total number of evaluable patients for that end point.
 ORR, objective response rate; PSA50, confirmed 50% or greater PSA response rate
 Markowski MC, Antonarakis ES. J Clin Oncol. 2020;JCO2002246. 2. Mateo J et al. N Engl J Med 2015;373:1697-1708. 3. Mateo J et al. Lancet Oncol 2020;21:162-174. 4. de Bono J et al. N Engl J Med 2020;382:2091-2102. 5. Abida W et al. J Clin Oncol doi:10.1200/JCO.20.01035. 6. de Bono JS et al. J Clin Oncol 2020;38(suppl; abstr 119).

ONGOING STUDIES OF PARP INHIBITOR COMBINATIONS IN PROSTATE CANCER

NCT03732820: Phase 3 Study of olaparib + abiraterone vs abiraterone in mCRPC (PROpel)


NCT03748641: Phase 3 Study of niraparib + abiraterone vs abiraterone in mCRPC (MAGNITUDE)

NCT03395197: Phase 3 Study of talazoparib + Enzalutamide vs Enzalutamide in mCRPC (TALAPRO-2)

NCT 04455750: Phase 3 study of rucaparib + enzalutamide vs enzalutamide in mCRPC (CASPAR)

OLAPARIB + ABIRATERONE IN UNSELECTED^a mCRPC

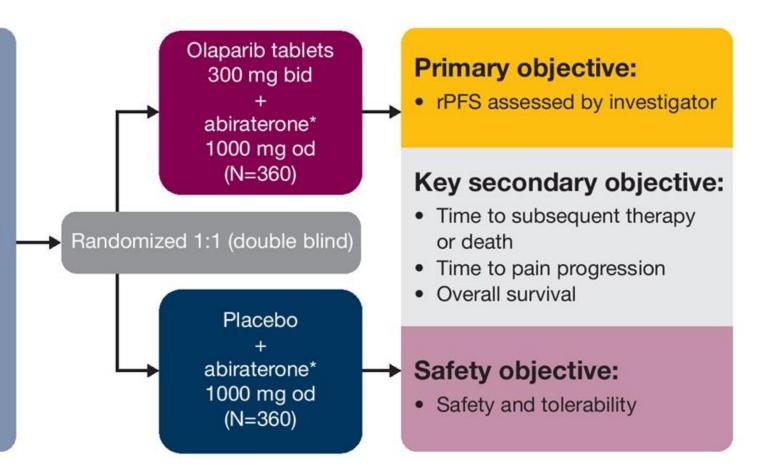
0

^aPatients unselected based on biomarker criteria. Clark NW, et al. Lancet Oncol. 2018;19:975-86.

27

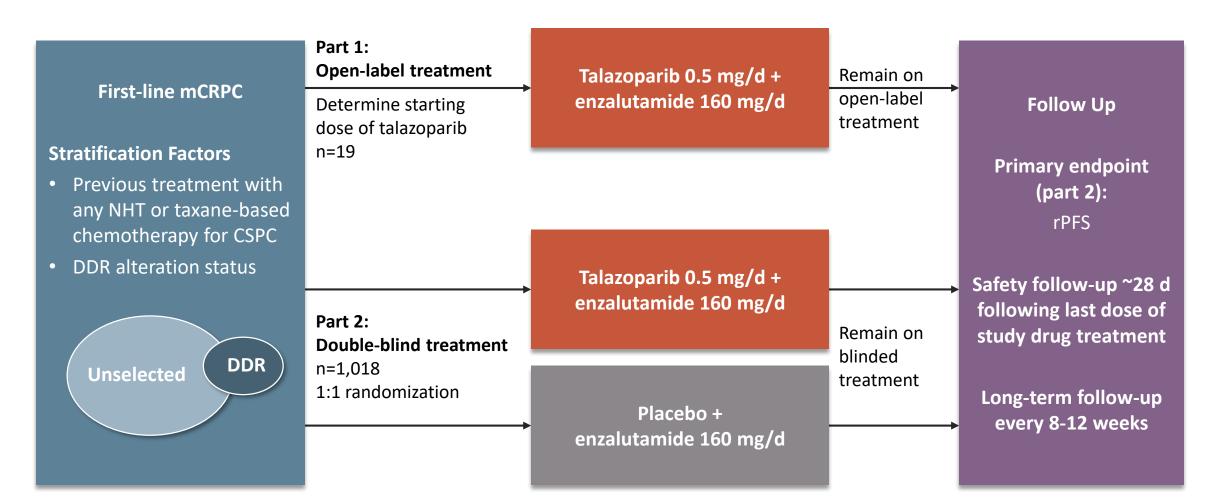
30

PROPEL STUDY: ABIRATERONE +/- OLAPARIB



Key eligibility

- Progressive mCRPC
- First-line setting (may have previously received docetaxel at mHSPC stage)
- ECOG performance status 0–1


Stratification

- Metastasis: bone only vs visceral vs other
- Docetaxel treatment at mHSPC stage: yes vs no

TALAPRO-2: STUDY DESIGN^{1,2}

CSPC, castration-sensitive prostate cancer
1. <u>https://clinicaltrials.gov/ct2/show/NCT03395197</u>.
2. Agarwal N, et al. ASCO 2019; abstract TPS337.

GUIDELINES SUMMARY

- AUA Guidelines 2020: Advanced Prostate Cancer¹
 - Clinicians should offer a PARP inhibitor to patients with deleterious or suspected deleterious germline or somatic homologous recombination repair gene-mutated mCRPC following prior treatment with enzalutamide or abiraterone acetate, and/or a taxane-based chemotherapy
- NCCN guidelines (version 2.2020; May 21, 2020)²
 - Both olaparib and rucaparib are recommended in the second line setting and beyond in the treatment algorithm for mCRPC (section: PROS-16)
- Updated recommendations from European and international associations are expected shortly²

ONGOING STUDIES OF PD-1/PD-L1 INHIBITORS IN COMBINATION WITH PARP INHIBITORS IN PCa

NCT03338790: Phase 2 Study of Nivolumab in Combination With Rucaparib, Docetaxel, or Enzalutamide in mCRPC (CheckMate -9KD)

NCT03330405: Phase 2 Study of Avelumab Plus Talazoparib in Locally Advanced or Metastatic Solid Tumors (JAVELIN PARP Medley)

NCT03834519: Phase 3 Study of Pembrolizumab + Olaparib vs Abiraterone or Enzalutamide in mCRPC (KEYLYNK-010)

https://clinicaltrials.gov/ct2/show/NCT03338790; https://clinicaltrials.gov/ct2/show/NCT03330405; https://clinicaltrials.gov/ct2/show/NCT03834519

CONCLUSIONS

- The treatment of men with metastatic prostate cancer has become more complex, now integrating predictive genomic biomarker testing
- **Two PARPi's** are now approved with **olaparib** having **OS data** in mCRPC based on the PROfound study
 - Trials are under way for 3 further therapies
- Precision medicine approaches using germline and somatic tumor testing are already changing our treatment algorithms and are anticipated to continue to inform decision making and improve outcomes for our patients
- Combination therapies and expanded indications represent the next steps for PARPi
 - Experts should consider how to plan therapy and communicate with patients in this increasingly complex environment

THE ROLE OF PARPI IN PROSTATE CANCER: FUTURE PERSPECTIVES

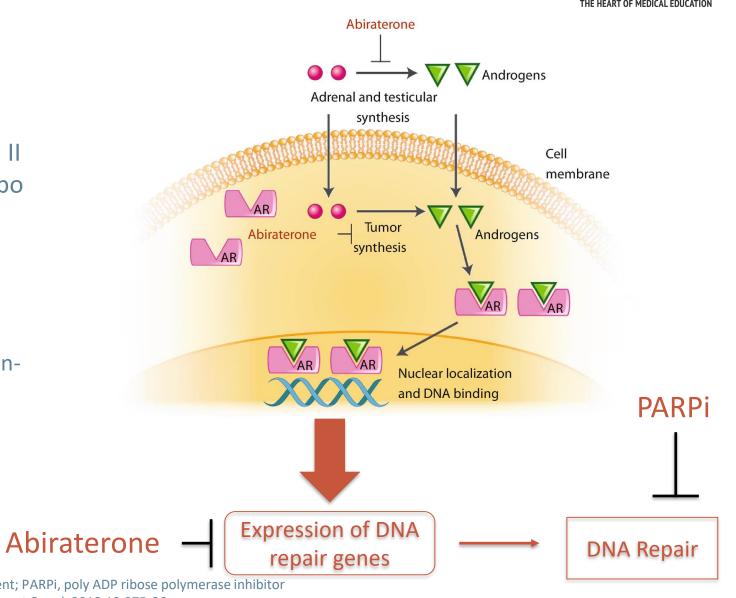
Dr. Neal D. Shore (Chair) Carolina Urologic Research Center

FDA APPROVAL: OLAPARIB AND RUCAPARIB FOR mCRPC

In May 2020, based on data from the PROfound study, the FDA approved olaparib for the treatment of patients with deleterious or suspected germline or somatic HRR^a genemutated mCRPC, who have progressed following prior treatment with enzalutamide or abiraterone^{1,b}

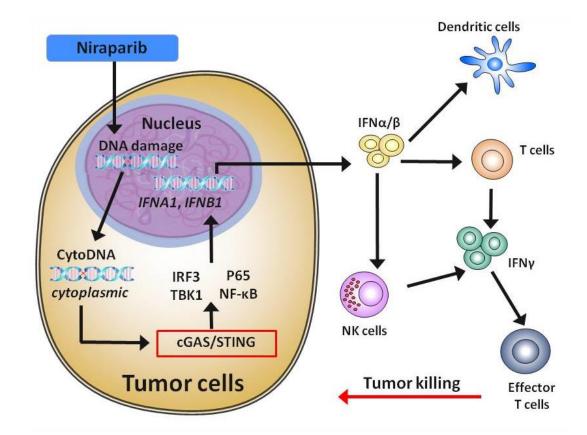
In May 2020, based on data from the TRITON2 study, the FDA granted accelerated approval to rucaparib for the treatment of patients with deleterious *BRCA1/2* (germline and/or somatic)-associated mCRPC, who have been treated with an androgen receptor-directed therapy and a taxane-based chemotherapy²

^aBRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L. ^bSelect patients for therapy based on two FDA-approved companion diagnostic tests: BRACAnalysis CDx and FoundationOne CDx. HRR, homologous recombination repair; mCRPC, metastatic castrate-resistant prostate cancer;

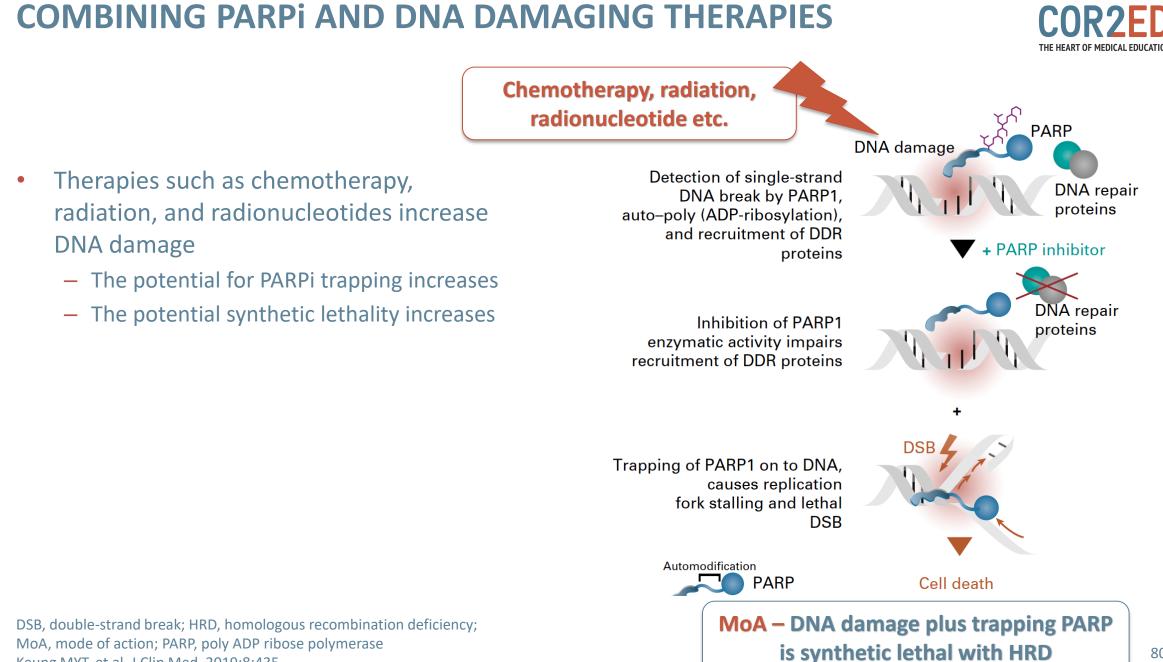

1. <u>https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer;</u>

2. https://www.fda.gov/drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate.

COMBINING PARPi AND HORMONAL TARGETING


COR2ED® THE HEART OF MEDICAL EDUCATION

- The NHA abiraterone, in combination with olaparib, prolonged radiologic progression-free survival in the Phase II PROpel trial vs abiraterone and placebo
 - Suggests synergy between hormonal treatments and PARPi
- AR signalling is a regulator of tumour growth
 - AR signalling inhibitors appear to downregulate DDR gene expression



COMBINING PARPI AND IMMUNE CHECKPOINT INHIBITORS

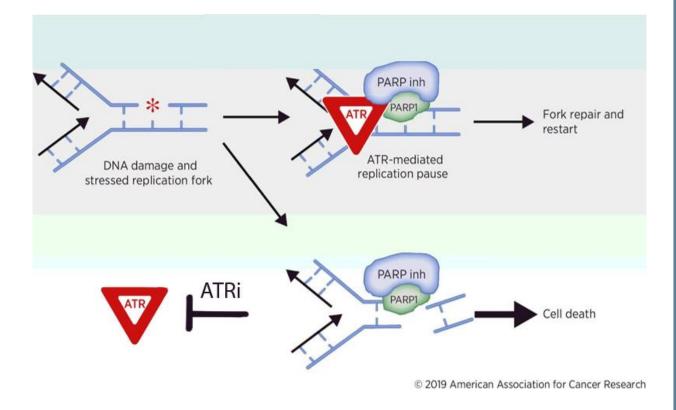
- Unrepaired DNA damage from PARPi leads to presence of cytoplasmic DNA which activates the STING pathway
 - Activation of STING
 - \uparrow expression and release of type 1 IFNs
 - \uparrow infiltration of effector T cells

cGAS, cyclic GMP-AMP synthase; IFN, interferon; IRF3, interferon regulatory factor 3; NK, natural killer; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1 Huang J, et al. Biochem Biophys Res Commun. 2015;463:551-6; Jiao S, et al. Clin Cancer Res. 2017;23:3711-20. THE HEART OF MEDICAL EDUCATIO

Keung MYT, et al. J Clin Med. 2019;8:435.

80

PARPI COMBINATIONS TO INDUCE OTHER FORMS OF SYNTHETIC LETHALITY



81

- Combined interventions can induce or enhance synthetic lethality by disrupting alternative pathways involved in DNA repair
- Such inhibitors of cell signalling pathways include:
 - ATR inhibitors (M6620)
 - Pi3K pathway inhibitors
 - Akt inhibitors (ipatasertib)
 - VEGFR inhibitors (cediranib)
 - DNMT inhibitors

Akt, protein kinase B ; ART(i), ataxia telangiectasia and Rad3-related protein kinase (inhibitor); DNMT, DNA methyltransferase; Pi3K, phosphoinositide 3-kinase; VEGFR, vascular endothelial growth factor receptor <u>Cancers (Basel)</u>. 2020 Jun; 12(6): 1607. Published online 2020 Jun 17. doi: <u>10.3390/cancers12061607</u> PMCID: PMC7352566 PMID: <u>32560564</u> Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer Michelle McMullen, Katherine Karakasis, Ainhoa Madariaga, and Amit M. Oza*

ATR inhibition induced synthetic lethality

Figure adapted from;

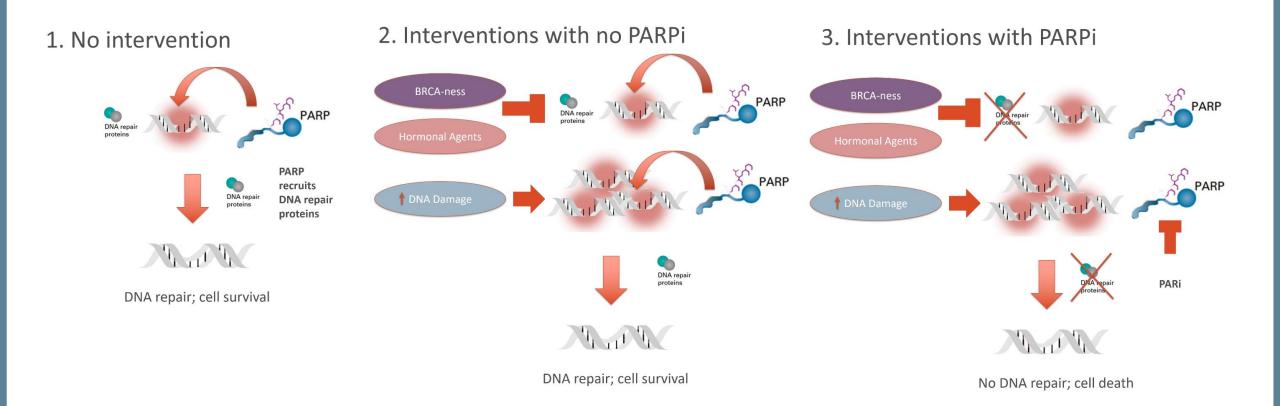
PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers Patrick G. Pilié, Carl M. Gay, Lauren A. Byers, Mark J. O'Connor and Timothy A. Yap DOI: 10.1158/1078-0432.CCR-18-0968 Published July 2019

OVERCOMING RESISTANCE: ONGOING COMBINATION TRIALS

Treatment Regimen	Status	Allocation	HRD Selection	Estimated Enrollment	Phase	CTID				
PARPi + AR signaling inhibitors										
Niraparib and Abiraterone and Prednisolone	Recruiting	Randomized	Yes	1000	III	NCT03748641				
Olaparib or Olaparib and Abiraterone and Prednisone	Recruiting	Randomized	Yes	70	Ш	NCT03012321				
Olaparib and Abiraterone and Prednisolone	Recruiting	Randomized	No	720	III	NCT03732820				
Rucaparib and Abiraterone, Enzalutamide or Docetaxel	Recruiting	Randomized	Yes	400	III	NCT02975934				
Niraparib and Apalutamide or Abiraterone and Prednisolone	Active, not recruiting		No	34	I.	NCT02924766				
Niraparib and Enzalutamide	Terminated (Suspended by funder)		No	2	I.	NCT02500901				
Talazoparib and Enzalutamide	Recruiting	Randomized	Yes ⁺	872	III	NCT03395197				
Rucaparib and Enzalutamide and Abiraterone	Recruiting	Non-randomized	No	60	I.	NCT04179396				
PARPi + immune checkpoint inhibitors										
Talazoparib and Avelumab	Recruiting	Non-Randomized	No	242	Ib/II	NCT03330405				
Olaparib and Durvalumab	Recruiting		Yes	32	Ш	NCT03810105				
Niraparib and JNJ-63723283 or Abiraterone and Prednisolone	Recruiting	Non-Randomized	Yes	150	Ib-II	NCT0341350				
Rucaparib and Nivolumab	Recruiting	Non-Randomized	No	330	Ш	NCT03338790				
Rucaparib or Rucaparib and Nivolumab	Recruiting	Randomized	No	60	lb/lla	NCT03572478				
Olaparib and Pembrolizumab	Recruiting	Non-Randomized	No	400	I.	NCT02861573				
Olaparib and Pembrolizumab	Not yet recruiting	Randomized	No	780	III	NCT03834519				
PARPi + chemotherapy agents										
Rucaparib, Docetaxel and carboplatin	Recruiting		Yes	20	Ш	NCT03442556				
Pamiparib and Temozolomide	Recruiting	Non-randomized	Yes	150	I.	NCT03150810				
PARPi + Radionuclide therapies										
Niraparib and Radium Ra 223 Dichloride	Recruiting		No	6	1	NCT03076203				
Olaparib and Radium Ra 223 Dichloride	Recruiting	Randomized	No	112	Ш	NCT03317392				
Olaparib and 177Lu-PSMA	Recruiting		No	52	I.	NCT03874884				
PARPi + surgical procedures										
Olaparib and RP	Recruiting		Yes	13	Ш	NCT03432897				
Olaparib and RP	Recruiting		Yes	15	Ш	NCT03570476				
PARPi + VEGF RTK inhibitors										
Olaparib and Cediranib	Active, not recruiting	Randomized	No	90	Ш	NCT02893917				

Adapted from Virtanen V, et al., Genes (Basel). 2019;10(8):565; clinicaltrials.gov

OVERCOMING RESISTANCE: ONGOING COMBINATION TRIALS


Treatment Regimen	Status	Allocation	HRD Selection	Estimated Enrollment	Phase	CTID
PARPi + AKT inhibitors						
Rucaparib and Ipatasertib	Recruiting	Non-Randomized	No	54	Ib	NCT03840200
PARPi + androgens						
Olaparib and Testosterone Enanthate or Cypionate	Recruiting		Yes	30	П	NCT03516812
PARPi + ATR inhibitors						
Olaparib and AZD6738	Recruiting	Non-Randomized	No	47	П	NCT03787680
PARPi + GnRH antagonists						
Olaparib and Degarelix	Recruiting	Randomized	No	20	I	NCT02324998
PARPi + nanoparticle conjugate						
Olaparib and CRLX101	Recruiting	Non-randomized	No	123	1/11	NCT02769962
Personalized medicine approach						
SMMART therapy	Recruiting		No	52	I	NCT03878524
PARPi + radiation treatment						
Olaparib and RT	Recruiting	Randomized	No	112	1/11	NCT03317392

CTID, clinical trial identification; GnRH, gonadotropin-releasing hormone; SMMART, serial measurements of molecular and architectural responses

Virtanen V, et al. Genes (Basel). 2019;10(8):565; clinicaltrials.gov

FURTHER DISRUPTION OF DNA DAMAGE REPAIR OR INCREASED DNA DAMAGE CAN OVERCOME PARPI RESISTANCE

CONCLUSIONS

- Somatic and germline testing for common DDR mutations are recommended for all patients with metastatic prostate cancer
- Multiple PARPi have proven efficacy and tolerability in mCRPC
 - With olaparib having OS data in mCRPC based on the PROfound study
 - Studies into combination therapies with hormonal agents are underway
- Combinations with therapies which induce DNA damage or a BRCA-like phenotype may help overcome PARPi resistance
- Investigations into PARP inhibitor efficacy in locally advanced prostate cancer may alter the place of PARP inhibition in the treatment pathway

COR2ED Bodenackerstrasse 17 4103 Bottmingen SWITZERLAND

Dr. Froukje Sosef MD

 \sim

+31 6 2324 3636

froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

+41 79 529 42 79

antoine.lacombe@cor2ed.com

Heading to the heart of Independent Medical Education Since 2012