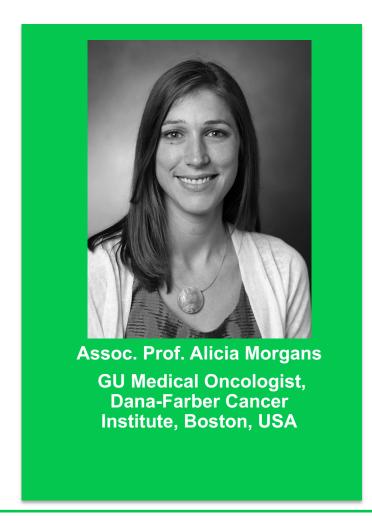


GU CONNECT MICRO E-LEARNING

THE USE OF PARP INHIBITORS IN PROSTATE CANCER TREATMENT AND THE RATIONALE BEHIND COMBINATION TREATMENT

MODULE ONE


DECEMBER 2022

MODULE ONE

PARPI IN ADVANCED PROSTATE CANCER

THIS MODULE HAS BEEN DEVELOPED BY TWO INTERNATIONAL EXPERTS

Clinical Senior Lecturer,
Translational and Clinical Research
Institute, Faculty of Medical
Sciences, Newcastle University, UK

DISCLAIMER AND DISCLOSURES

Please note: The views expressed within this presentation are the personal opinions of the authors. They do not necessarily represent the views of the authors' academic institutions, or the rest of the GU CONNECT group.

This content is supported by an Independent Educational Grant from AstraZeneca.

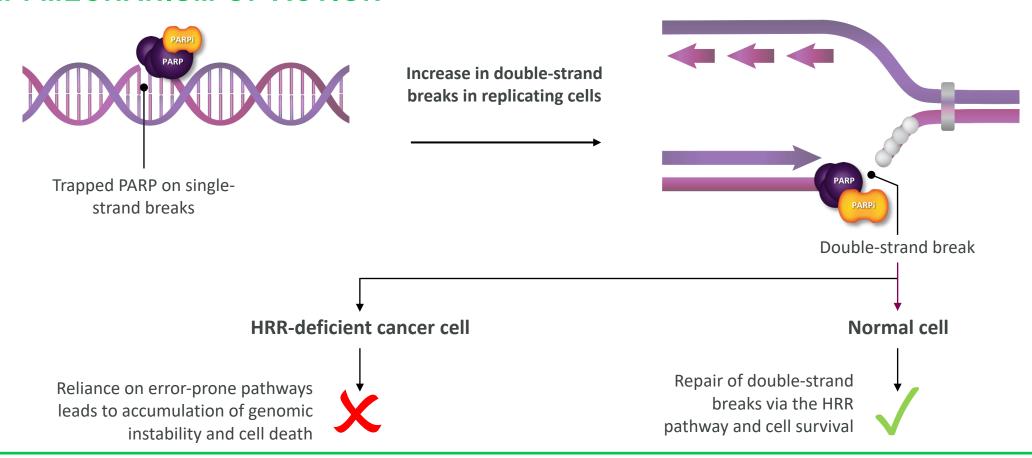
The experts have received financial support/sponsorship for research support, consultation, or speaker fees from the following companies:

- Dr. Alicia Morgans: Astellas, AstraZeneca, AAA, Bayer, Exelixis, Janssen, Lantheus, Myovant, Novartis, Pfizer, Telix,
 Sanofi
- Dr. Pasquale Rescigno: AstraZeneca, Janssen, MSD Italy, BMS and Gilead

EDUCATIONAL OBJECTIVES

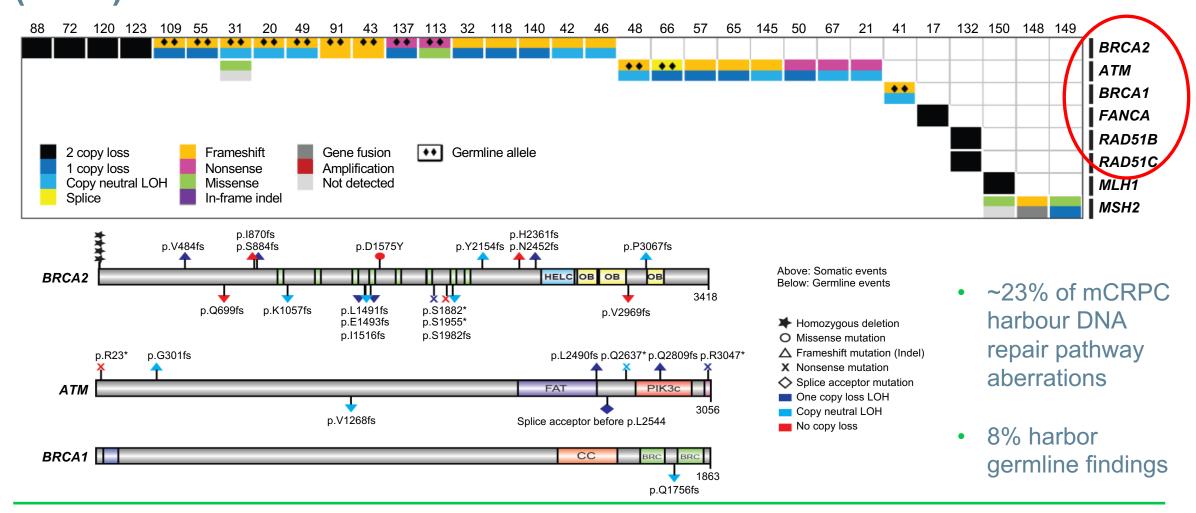
- Understand the mechanism of action of PARPi's
- Understand the role of genetic testing
- Recognise the efficacy and safety profiles of PARP inhibitors
- Understand their differences across tumour types
- Understand the place of PARP inhibitors in the treatment landscape for patients with prostate cancer

CLINICAL TAKEAWAYS


- PARP inhibitors are effective drugs as monotherapy in mCRPC patients with HRR alterations
- Genetic testing is important to help with treatment decision making and for understanding inherited risk
- BRCA mutations are associated with poor outcomes in mCRPC patients
- Patients with tumours harbouring *BRCA1/BRCA2* alteration appear to derive the greatest clinical benefit from PARPi, but patients with other HRR alterations might also derive benefit

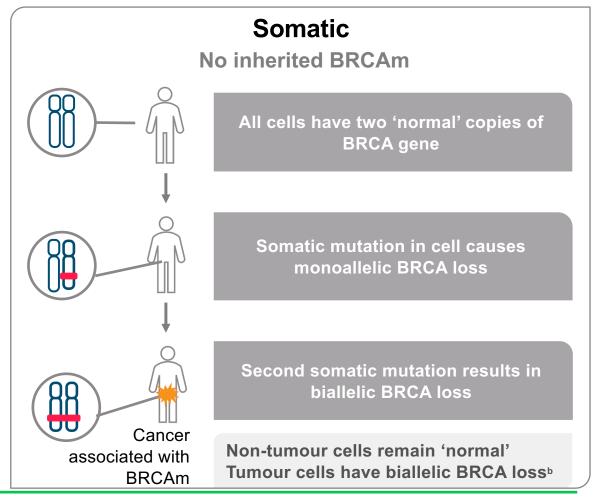
PARPI MECHANISM OF ACTION

FOR PATIENTS WITH HRRm, PARPI'S ARE A TREATMENT OPTION AS THEY TRIGGER CELL DEATH IN CANCER CELLS WITH AN HRR DEFICIENCY¹



PARPI MECHANISM OF ACTION

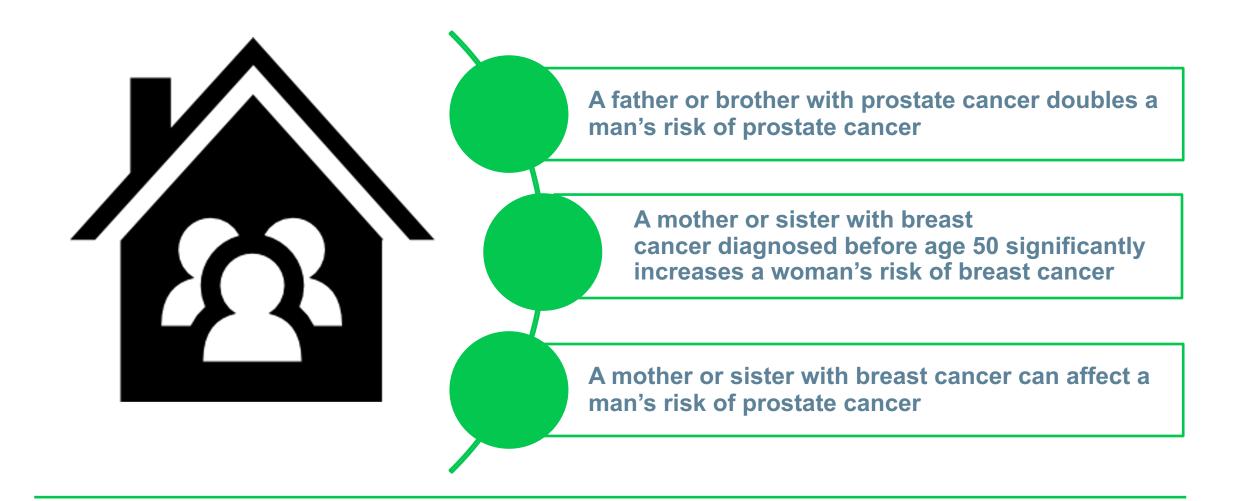
DNA REPAIR PATHWAY ABERRATIONS: HOMOLOGOUS RECOMBINATION REPAIR (HRR) DEFECTS


DNA DAMAGE REPAIR MUTATIONS AND GENETIC TESTING

TUMOURS CAN DEVELOP IN THE CONTEXT OF GERMLINE OR SOMATIC GENE ALTERATIONS¹⁻⁷

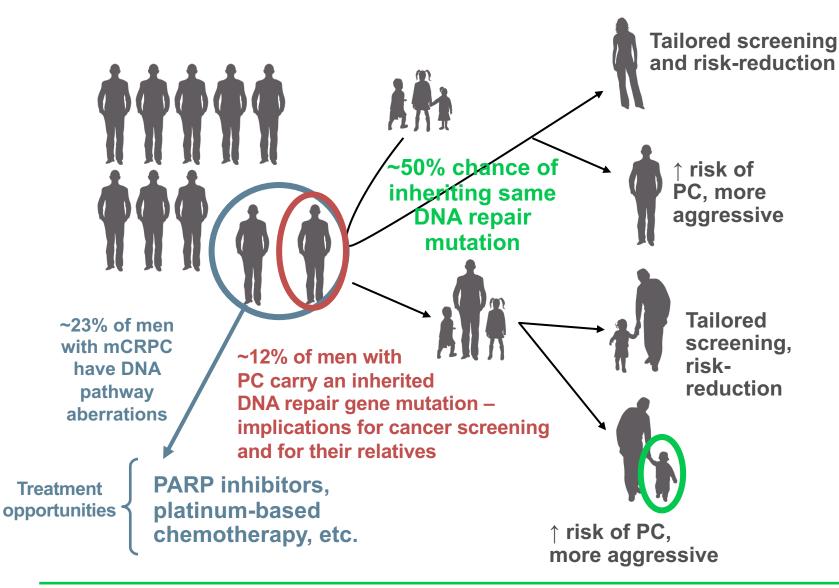
BRCA^a MUTATIONS PROVIDE A GOOD EXAMPLE OF THIS^{1,2}

Germline **BRCAm** inherited from parent All cells have one mutated and one normal BRCA^a copy (monoallelic BRCA loss – cells are viable but predisposed to cancer) Somatic mutation causes loss of normal BRCA copy in a cell (biallelic BRCA loss is a tumour driver event) Cancer associated with BRCAm Non-tumour cells remain with monoallelic BRCA loss Tumour cells have biallelic BRCA loss^b



^a Can be either *BRCA1* or *BRCA2*. ^b Loss of function can also result from epigenetic and other non-genomic mechanisms *BRCA1*/2, breast cancer gene 1/2; BRCAm, breast cancer gene 1/2 mutation

^{1.} Wu H, et al. Gene Ther. 2017;24,601-9; 2. Castro E, et al. Asian J Androl. 2012;14:409-14; 3. Macedo GS, et al. Genet Mol Biol. 2019;42(1 suppl 1):215-31; 4. Ryland GL, et al. BMC Medical Genomics. 2015;8:45; 5. Stoppa-Lyonnet D. Eur J Human Genet. 2016;24:S3-9; 6. Tucker T, et al. J. Clin Genet. 2002;62:345-57; 7. Hunt JL. Cell & Tissue Based Mol Pathol. 2009;5:50-5


FAMILY HISTORY IS THE STRONGEST KNOWN RISK FACTOR FOR PROSTATE CANCER

CASCADING IMPACT

- Full family history should be collected:
 - 3 or 4 generation pedigree
 - Ancestry and consanguinity information
 - Any prior genetic testing
- Family history:
 - Guides choice of broad vs narrow gene panel
 - Determines a patient's criteria for testing
 - Identifies the most appropriate family members for testing
 - Informs screening if test is negative

HR, homologous recombination; mCRPC, metastatic castration-resistant prostate cancer; PARP, poly-ADP ribose polymerase; PC, prostate cancer Cheng HH, et al. J Natl Compr Canc Netw. 2019;17:515-21; Pritchard CC, et al. N Engl J Med. 2016;375:443-53; Szymaniak BM, et al. JCO Oncol Pract. 2020;16:811-9; Antonarakis ES, et al. Eur Urol. 2018;74:218-25

GUIDELINE RECOMMENDATIONS FOR GENETIC TESTING

Guideline/consensus	Recommendations for genomic testing	Recommendations for specific genes to test	Recommendations for specimen to test (e.g. tissue, ctDNA)	Recommendations for germline testing
ESMO Clinical Practice Guidelines ^{1,2}	✓	✓	✓	✓
EAU-EANM-ESTRO- ESUR-ISUP-SIOG Guidelines ³	✓	*	×	✓
NCCN Guidelines ⁴	✓	✓	✓	✓
AUA/ASTRO/SUO Guidelines ⁵	✓	*	×	✓

^{1.} Parker C, et al. Ann Oncol. 2020;31(9):1119-34; 2. Mosele F, et al. Ann Oncol. 2020 Nov;31(11):1491-1505; 3. Mottet N, et al. EAU - EANM - ESTRO -ESUR - ISUP - SIOG Guidelines on Prostate Cancer. <u>EAU-EANM-ESTRO-ESUR-ISUP SIOG-Guidelines-on-Prostate-Cancer-2022 2022-04-25-063938 yfos.pdf (d56bochluxgnz.cloudfront.net)</u>

Accessed Dec 2022); 4. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2023). https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed Oct 2022; 5. Lowrance WT, et al. J Urol. 2021; 205(1):22-9

GUIDELINE RECOMMENDATIONS FOR GENETIC TESTING

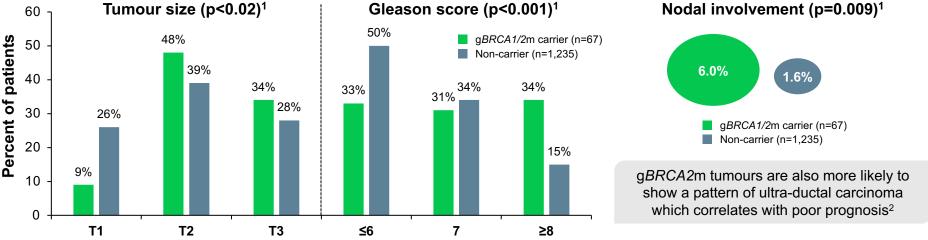
diagnosed with clinically significant

PCa at age < 60 years or a family member who died from PCa cancer Men with a family history of highrisk germline mutations or a family history of multiple cancers on the

same side of the family

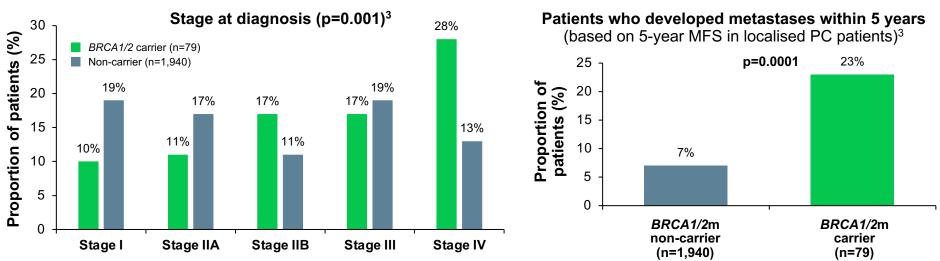
ESMO ¹	EAU-EANM-ESTRO-ESUR-ISUP- SIOG ²	NCCN ³	AUA/ASTRO/SUO⁴
Somatic testing for HRR and MMR defects (or MSI) in patients with mCRPC	Somatic testing for homologous repair and MMR defects should be offered to all metastatic patients should be offered somatic genomic testing	Somatic testing in mPCa patients to identify alterations in HRR genes. May be considered in patients with regional PCa.	Germline and somatic tumour genetic testing should be offered to identify DNA repair deficiency mutations and MSI status that may inform prognosis in
Germline testing for BRCA2 and other DDR genes associated with cancer predisposition syndromes is recommended in patients with a family history of cancer and should be considered in all patients with metastatic prostate cancer	 Germline testing should be considered for men with a personal or family history of PCa or other cancer types arising from DNA repair gene mutations (strength rating "weak"): Men with mPCa Men with high-risk PCa and a family member diagnosed with PCa at age < 60 years Men with multiple family members 	 Germline testing recommended for patients with prostate cancer and any of the following: Very-high-risk localized or high-risk localised, very high-risk, regional, or mPCa Family history of certain cancers Ashkenazi Jewish ancestry A known family history of a familial cancer risk mutation 	patients with mCRPC and counselling regarding family risk as well as potential targeted therapies

Personal history of breast cancer


INTERNATIONAL GUIDELINE RECOMMENDATIONS FOR GENETIC TESTING

ASTRO, American Society for Radiation Oncology; AUA, American Urological Association; BRCA, breast cancer gene; EANM, European Association of Nuclear Medicine; EAU, European Association of Urology; ESMO, European Society for Medical Oncology; ESTRO, European Society for Radiotherapy and Oncology; ESUR, European Society of Urogenital Radiology; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; MMR, mismatch repair; mPCa, metastatic prostate cancer; MSI, microsatellite instability; NCCN, National Comprehensive Cancer Network; PARP, poly-ADP ribose polymerase; SIOG, International Society of Geriatric Oncology; SUO, Society of Urologic Oncology 1. Parker C, et al. Ann Oncol. 2020;31(9):1119-34; 2. Mottet N, et al. Guidelines on prostate cancer 2022: EAU-EANM-ESTRO-ESUR-ISUP-SIOG-Guidelines-on-Prostate-Cancer-2022_2022-04-25-063938_yfos.pdf (d56bochluxqnz.cloudfront.net); 3. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2023). https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed Oct 2022; 4. Lowrance WT, et al. J Urol. 2021; 205(1):22-9

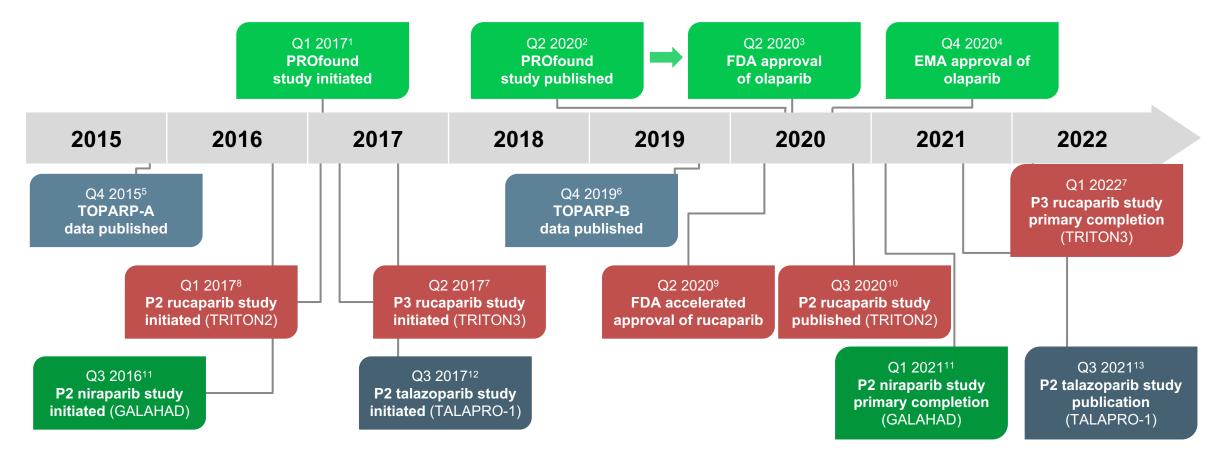
BRCAM ARE ASSOCIATED WITH POOR CLINICAL OUTCOMES



HRRm is associated with an aggressive phenotype, with most data assessing BRCAm¹⁻³

Several large retrospective studies have found an association between *BRCA*m and aggressive disease and rapid progression to metastatic disease^{1–3}

BRCA2m tumours are also more likely to show a pattern of intraductal carcinoma which correlates with poor prognosis²



BRCA1/2, breast cancer gene 1/2; BRCAm, BRCA mutated; (g)BRCA2m, (germline) BRCA2 mutation; (g)BRCA1/2m, (germline) breast cancer gene 1/2 mutation; HRRm, homologous recombination repair mutation; MFS, metastasis-free survival; PC, prostate cancer

PARPI MONOTHERAPY IN mCRPC: NON-REGISTRATIONAL STUDIES

PHASE 2/3 PARP INHIBITOR MONOTHERAPY TRIALS IN mCRPC

EMA, European Medicines Agency; FDA, United States Food and Drug Administration; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; P, phase; PARP, poly-ADP ribose polymerase; Q, quarter

1. NCT02987543; 2. de Bono J, et al. N Engl J Med. 2020;382:2091-102; 3. FDA approves olaparib for HRR gene-mutated metastatic castration-resistant prostate cancer. www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer; 4. Lynparza SmPC; 5. Mateo J, et al. N Engl J Med. 2015;373:1697-708; 6. Mateo J, et al. Lancet Oncol. 2020;21:162-74; 7. NCT02975934; 8. NCT02952534; 9. FDA grants accelerated approval to rucaparib for BRCA-mutated metastatic castration-resistant prostate cancer. www.fda.gov/drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate; 10. Abida W, et al. J Clin Oncol. 2020;38:3763-72; 11. NCT02854436; 12. NCT03148795; 13. de Bono JS, et al. Lancet Oncol. 2022;9:1250-64. All accessed August 2022.

TOPARP TRIALS: PHASE 2 TRIALS OF OLAPARIB IN HEAVILY PRE-TREATED mCRPC PATIENTS

TOPARP A – UNSELECTED PTS (TEST SET)¹

- Olaparib 400 mg bid
- 33% response rate (n=16/49) (95% CI: 20-48%)
- Genomic analysis of prospectively obtained tumour samples revealed:
 - 33% were biomarker positive (n=16/49)
 - mutations in ATM, BRCA2 and others
 - 14 of these patients responded to treatment
 - 67% were biomarker negative (n=33/49)
 - 2 of these patients responded
- TOPARP A: identified an association between somatic alterations in DDR genes and antitumour activity of olaparib in mCRPC patients

TOPARP B – BIOMARKER SELECTED PTS (VALIDATION SET)²

- Olaparib 300 mg or 400 mg bid
- First prospective clinical trial in a genomically defined population of patients with mPC
- Distribution of DDR mutations in screened patients:
 - 32.7% *BRCA1/2*
 - 21.4% ATM
 - 21.4% *CDK12*
 - 7.1% *PALB*2
 - 21.4% Other
- Study confirmed the antitumour activity of olaparib against mCRPC with germline or somatic alterations in DDR genes

TOPARP-B RESULTS: OLAPARIB HAS ANTITUMOUR ACTIVITY AGAINST mCRPC WITH DDR GENE ALTERATIONS

 Despite randomisation, CDK12 aberrations were imbalanced between the cohorts, which might explain the inferior response in the 300 mg cohort

DNA DAMAGE RESPONSE GENE ABERRATION SUBGROUP

Baseline characteristics	Total	Dose group			
	(N=98)	300 mg (n=49)	400 mg (n=49)		
BRCA1/2	32 (33%)	15 (31%)	17 (35%)		
ATM	21 (21%)	10 (20%)	11 (22%)		
CDK12	21 (21%)	15 (31%)	6 (12%)		
PALB2	7 (7%)	3 (6%)	4 (8%)		
OTHER	21 (21%)	10 (20%)	11 (22%)		

	Total (N=92ª)		Dose group						
		Olai (IV-92	-)	300 mg (n=46)			400 mg (n=46)		
	Resp/N	%	95% CI	Resp/n	%	95% CI	Resp/n	%	95% CI
Composite response (confirmed)	43/92	46.7%	36.3-57.4	18/46	39.1%	25.1-54.6	25/46	54.3%	39.0-69.1
RECIST 1.1 objective response	14/70	20.0%	11.4-31.3	6/37	16.2%	6.2-32.0	8/33	24.2%	11.1-42.3
PSA response ≥50%	30/89	33.7%	24.0-44.5	13/43	30.2%	17.2-46.1	17/46	37.0%	23.2-52.5
CTC conversion	28/55	50.9%	37.1-64.6	13/27	48.1%	28.7-68.1	15/28	53.6%	33.9-72.5
RECIST or PSA response	32/92	34.8%	25.1-45.4	13/46	28.3%	16.0-43.5	19/46	41.3%	27.0-56.8

^a 98 randomised, 92 evaluable for primary endpoint analysis (6 found ineligible/not evaluable and excluded)

TOPARP-B: OLAPARIB SIDE EFFECTS

TOPARP-B STUDY: TEAEs INCIDENCE ≥10% (N=98)

N, (%)	300 mg (N=49)			400 mg (N=49)		
	Grade 1-2	Grade 3	Grade 4	Grade 1-2	Grade 3	Grade 4
Anaemia	16 (33)	14 (29)	1 (2)	19 (39)	18 (37)	0
Fatigue	19 (39)	3 (6)	0 ` ′	27 (55)	4 (8)	0
Back pain	13 (27)	4 (8)	0	11 (22)	3 (6)	0
Nausea	17 (35)	1 (2)	0	13 (27)	0 `	0
Platelet count decreased	9 (18)	2 (4)	1 (2)	12 (24)	3 (6)	0
Decreased appetite	13 (27)	2 (4)	0 ` ′	10 (20)	0 ` ′	0
Vomiting	10 (20)	0	0	15 (31)	0	0
Weight decreased	9 (18)	1 (2)	0	15 (31)	0	0
Diarrhoea	8 (16)	1 (2)	0	10 (20)	1 (2)	0
Arthralgia	8 (16)	1 (2)	0	5 (10)	4 (8)	0
Hypertension	9 (18)	1 (2)	0	4 (8)	4 (8)	0
Neutrophil count decreased	9 (18)	2 (4)	0	4 (8)	2 (4)	1 (2)
Dyspnoea	5 (10)	1 (2)	0	10 (20)	1 (2)	0
Abdominal pain	4 (8)	0 `	0	6 (12)	5 (10)	1 (2)
Blood creatinine increased	9 (18)	0	0	6 (12)	0 `	0
Oedema peripheral	6 (12)	0	0	8 (16)	1 (2)	0
Jrinary tract infection	3 (6)	3 (6)	0	6 (12)	3 (6)	0
Constipation	7 (14)	0	0	7 (14)	0 `	0
Cough	3 (6)	0	0	9 (18)	0	0
Musculoskeletal chest pain	3 (6)	0	0	9 (18)	0	0
Musculoskeletal pain	5 (10)	1 (2)	0	5 (10)	1 (2)	0
Hypokalaemia	3 (6)	0 `	0	8 (16)	0 ` ′	0
Muscular weakness	4 (8)	0	0	5 (10)	2 (4)	0
White blood cell count decreased	4 (8)	0	0	6 (12)	1 (2)	0
Alkaline phosphatase increased	3 (6)	0	0	5 (10)	1 (2)	0
Dysgeusia	6 (12)	0	0	3 (6)	0 `	0
Haematuria Taematuria	5 (10)	0	0	2 (4)	2 (4)	0
nfluenza like illness	3 (6)	0	0	6 (12)	0 `	0
Muscle spasms	3 (6)	0	0	6 (12)	0	0
Spinal cord compression	0 `	1 (2)	0	0 ` ´	5 (10)	0

GALAHAD: PHASE 2 STUDY OF NIRAPARIB IN PRE-TREATED mCRPC PATIENTS WITH DDRm

Biomarker evaluation (pre-screening) Screening phase (28 days)

Treatment phase Niraparib 300 mg once daily

Follow-up phase

28-day cycle until end of treatmenta

Every 3 months after end of treatment

Key eligibility criteria

- mCRPC
- Biomarker positive for DRD
- Progressed on ≥1 ARSI therapy and ≥1 taxane-based CTx
- No prior PARP inhibitor or platinum-based CTx
- No prior or current MDS/AML

Primary endpoint

 Objective response rate (ORR) of soft tissue (visceral or nodal disease), as defined by RECIST 1.1^b with no evidence of bone progression according to the PCWG3 criteria in patients with biallelic BRCA

Secondary endpoints

- ORR (per RECIST 1.1 / PCWG3 criteria) in patients with biallelic non-BRCA
- CTC response: CTC=0 per 7.5 mL blood at 8 weeks post-baseline in patients with baseline CTC >0
- **OS:** time from enrolment to death from any cause
- **rPFS:** time from enrolment to radiographic progression or death from any cause, whichever occurs first
- **Duration of objective response:** time from complete response (CR) or partial response (PR) to radiographic progression of disease, unequivocal clinical progression, or death, whichever occurs first
- Safety: adverse events and laboratory tests

AML, acute myeloid leuameia; ARSI, androgen signalling receptor inhibitors; BRCA, breast cancer gene; CTC, circulating tumour cell; CTx, chemotherapy; DDRm, DNA damage repair mutations; DRD, DNA repair deficiency; mCRPC; metastatic castration resistant prostate cancer; MDS, myelodysplastic syndrome; OS, overall survival; PARP, poly adenosine diphosphate-ribose polymerase; PCWG3, Prostate Cancer Working Group 3; PSA50, ≥50% decline in prostate-specific antigen; RECIST, Response Evaluation Criteria in Solid Tumours; rPFS, radiographic progression-free survival

Smith M, et al. ESMO 2019, oral presentation

^a Treatment continued until disease progression, unacceptable toxicity or death; ^b Investigator assessed Non-BRCA: ATM, FANCA, PALB2, CHEK2, BRIP1 or HDAC2

GALAHAD: NIRAPARIB SHOWS ANTI-TUMOUR ACTIVITY IN CONNECT MCRPC PATIENTS WITH DDRm, PARTICULARLY BRCA1/2

OBJECTIVE RESPONSE RATE	BRCA cohort² (N=76)	non- <i>BRCA</i> cohort ^b (N=47)
Objective response rate	26 (34.2%; 23.7-46.0)	5 (10.6%; 3.5-23.1)
Complete response	2 (3%)	0
Partial response	24 (32%)	5 (11%)

OVERALL SURVIVAL RADIOGRAPHIC PROGRESSION-FREE SURVIVAL 100 -100 -**BRCA** BRCA Non-BRCA Non-BRCA Radiographic progression-free survival (%) 80-90 -Overall survival (%) 70-80-60-**13.01 months** 70-(95% CI: 11.04-14.29) 50-60 – 40-50 -8.08 months (95% CI: 5.75-8.97) 30-40-20 – 9.63 months 30 -(95% CI: 8.05-13.44) 10-20 -**3.71 months** (95% CI: 1.97-5.49) 10 – 12 20 32 36 Time since enrolment (months) No. at risk No. at risk 12 16 20 24 (No. censored) (No. censored) BRCA 142 126 (5) 66 100 (11) 49 53 (33) 26 (43) 16 12 (49) 2 (52) (50) (53) (54) BRCA 91 (19) 27 (15) 49 (33) 10 (21) 9 (51) 0 (24) 2 (54) 0 (24) 1 (54) 0 (24) 0 (55) 0 (24) (53)142 (0) (51) (53)**Non-BRCA** 81 (0) 23 Non-BRCA (13)(15)(16)(16)

GALAHAD: NIRAPARIB SIDE EFFECTS

ALL-CAUSE TEAEs (N=288)

	Grade 1-2	Grade 3	Grade 4	Grade 5
Nausea	154 (53%)	15 (5%)	0	0
Vomiting	101 (35%)	10 (3%)	0	0
Constipation	95 (33%)	5 (2%)	1 (<1%)	0
Fatigue	87 (30%)	19 (7%)	0	0
Decreased appetite	85 (29%)	8 (3%)	0	0
Anaemia	61 (21%)	92 (32%)	2 (1%)	1 (<1%)
Thrombocytopenia	52 (18%)	24 (8%)	23 (8%)	0
Back pain	51 (18%)	13 (4%)	0	0
Arthralgia	38 (13%)	6 (2%)	0	0
Asthenia	37 (13%)	11 (4%)	0	0
Neutropenia	27 (9%)	17 (6%)	11 (4%)	0
Bone pain	23 (8%)	9 (3%)	0	0
Hypertension	22 (8%)	12 (4%)	0	0
Blood alkaline phosphatase increased	15 (5%)	11 (4%)	0	0
Stomatitis	15 (5%)	6 (2%)	0	0
Leukopenia	14 (5%)	11 (4%)	3 (1%)	0
γ-glutamyl transferase increased	13 (4%)	11 (4%)	1 (<1%)	0
Lymphopenia	11 (4%)	12 (4%)	1 (<1%)	0
Hypophosphataemia	7 (2%)	6 (2%)	1 (<1%)	0
Spinal cord compression	1 (<1%)	7 (2%)	0	0
General physical health deterioration	1 (<1%)	7 (2%)	1 (<1%)	4 (1%)

Data are n (%). Data are presented for grade 1-2 treatment-emergent adverse events with a combined incidence of ≥20% or any highergrade (grade 3-5) treatment-emergent adverse events with an incidence of ≥2%.

TALAPRO-1: TALAZOPARIB IN PRE-TREATED mCRPC PATIENTS WITH DDR MUTATIONS

International open label, phase 2 study

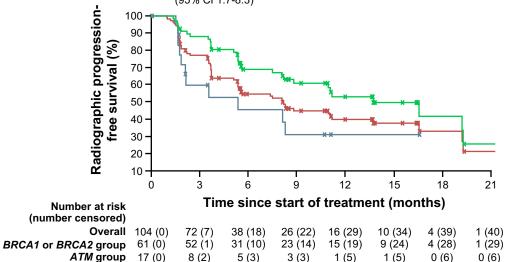
Patients with mCRPC and a DDR
alteration in 1 of the
following genes: ATM, ATR, BRCA1,
BRCA2, CHEK2, FANCA, MLH1,
MRE11A, NBN, PALB2, RAD51C;
1-2 previous CTx regimens and
progression on AA/enzalutamide
(N=128)

Talazoparib 1 mg/day
(0.75 mg for moderate
renal impairment)

Until radiographic
progression or
discontinuation for
other reason

- Primary endpoint: ORR
- Secondary endpoints: TTR, DoR, PSA decrease ≥50%, CTC count conversion, time to PSA progression, rPFS, OS, safety, PROs, pharmacokinetics

TALAPRO-1: TALAZOPARIB SHOWS ANTI-TUMOUR ACTIVITY IN mCRPC PATIENTS WITH DRDs, PARTICULARLY *BRCA1/2*


TUMOUR RESPONSE BY HRR GENE ALTERATION

N (%)	<i>BRCA1</i> or <i>BRCA2</i> (n=61)*	<i>BRCA2</i> (n=57)*	<i>PALB2</i> (n=4)	<i>ATM</i> (n=17) [†]	Other (N=22) [‡]	Total (N=104)				
Best overall response§	Best overall response§									
Confirmed complete response	6 (10)	6 (11)	0 (0)	1 (6)	0 (0)	7 (7)				
Confirmed partial response	22 (36)	20 (35)	1 (25)	1 (6)	0 (0)	24 (23)				
Stable disease (any duration)	21 (34)	19 (33)	2 (50)	6 (35)	8 (36)	37 (36)				
Stable disease for ≥6 months	6 (10)	6 (11)	0 (0)	2 (12)	0 (0)	8 (8)				
Non-complete response or non-progressive disease	4 (7)	4 (7)	0 (0)	0 (0)	0 (0)	4 (4)				
Progressive disease	4 (7)	4 (7)	0 (0)	8 (47)	10 (46)	22 (21)				
Not evaluable	4 (7)	4 (7)	1 (25)	1 (6)	4 (18)	10 (10)				
Objective response§	28 (46)	26 (46)	1 (25)	2 (12)	0 (0)	31 (30)				

*The BRCA1 or BRCA2 and BRCA2 groups included two patients with both BRCA2 and PALB2 alterations, one patient with both BRCA2 and CHEK2 alterations, and one patient with both BRCA2 and MLH1 alterations. †The ATM group included one patient with both ATM and FANCA alterations and one patient with both ATM and RAD51C alterations. ‡The other group included patients with HRR gene alterations in ATR, CHEK2, FANCA, MLH1, MRE11A, NBN, or RAD51C. § Only includes patients with measurable disease per investigator assessment

rPFS BY HRR GENE ALTERATION

- Overall n=104, events=63, median progression-free survival=5.6 months (95% CI 3.7-8.8)
- BRCA1 or BRCA2 group n=61, events=31, median progression-free survival=11.2 months (95% CI 7.5-19.2)
- -* ATM group n=17, events=11, median progression-free survival=3.5 months (95% CI 1.7-8.3)

ATM, ataxia telangiectasia mutated; BRCA1/2, breast cancer gene 1/2; CI, confidence interval; HRR, homologous recombination repair; rPFS, radiographic progression-free survival

TALAPRO-1: TALAZOPARIB SIDE EFFECTS

TALAPRO-1 STUDY: ALL-CAUSE TEAEs INCIDENCE ≥10% (N=127)

	Grade 1-2	Grade 3	Grade 4
Any treatment-emergent adverse event	50 (39%)	57 (45%)	4 (3%)
Non-haematological			
Nausea	39 (31%)	3 (2%)	0
Decreased appetite	32 (25%)	4 (3%)	0
Asthenia	25 (20%)	5 (4%)	0
Fatigue	23 (18%)	2 (2%)	0
Constipation	22 (17%)	1 (1%)	0
Diarrhoea	21 (17%)	0	0
Peripheral oedema	20 (16%)	1 (1%)	0
Back pain	16 (13%)	1 (1%)	0
Dyspnoea	15 (12%)	2 (2%)	0
Vomiting	15 (12%)	2 (2%)	0
Dizziness	15 (12%)	0	0

	Grade 1-2	Grade 3	Grade 4				
Haematological							
Any	22 (17%)	41 (32%)	5 (4%)				
Anaemia	23 (18%)	39 (31%)	0				
Thrombocytopenia	13 (10%)	7 (6%)	4 (3%)				
Neutropenia	11 (9%)	10 (8%)	0				
Leukopenia	12 (9%)	1 (1%)	0				
Lymphopenia	4 (3%)	4 (3%)	2 (2%)				

Data are n (%). Data presented are for events reported in at least 10% of patients

PARPI MONOTHERAPY IN mCRPC: STUDIES LEADING TO REGISTRATION

PROfound: PHASE 3 OF OLAPARIB VS. SECOND NEW HORMONAL AGENT IN HRRm mCRPC

Key eligibility criteria

- mCRPC with disease progression on prior NHA (abiraterone acetate or enzalutamide)
- Alterations in ≥1 of any qualifying gene with a direct or indirect role in HRR a

Cohort A BRCA1, BRCA2, or ATM alteration (N=245)

2:1 randomisation (Open label)

Cohort B
Other alterations
(N=142)

Olaparib 300 mg BID (n=162)

Physician's choice b (n=83)

Upon progression by BICR, physician's choice patients were allowed to cross over to olaparib

Olaparib 300 mg BID (n=94)

Physician's choice ^b (n=48)

Primary endpoint

rPFS in cohort A (RECIST 1.1 and PCWG3 by BICR)

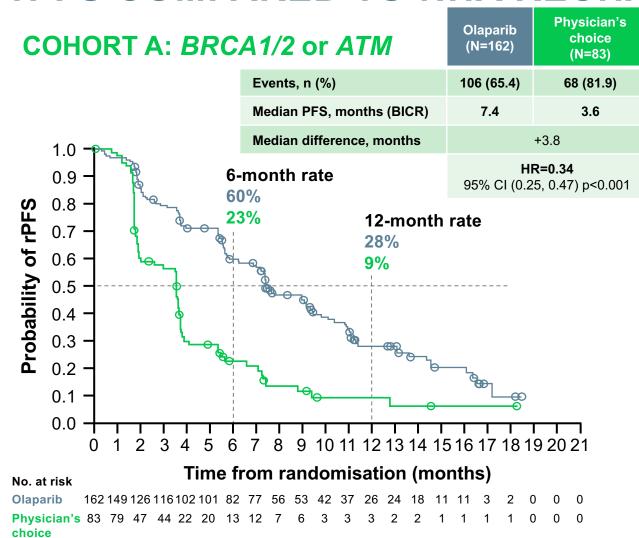
Key secondary endpoints

- rPFS in cohorts A and B (by BICR)
- Confirmed radiographic objective response rate in cohort A (by BICR)
- Time to pain progression in cohort A
- OS in cohort A

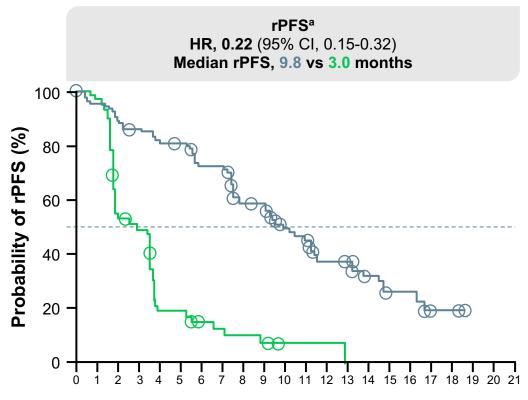
Stratification factors

- Previous taxane
- Measurable

disease


^a An investigational clinical trial assay, based on the FoundationOne® CDx next-generation sequencing test, used to prospectively select patients with alteration of BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51D, or RAD54L in their tumour tissue

^b Physician's choice: enzalutamide 160 mg/day, or abiraterone 1,000 mg/day + prednisone 5 mg BID

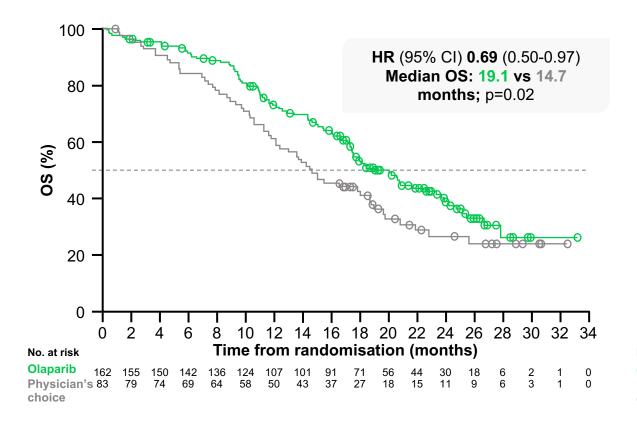

ATM, ataxia telangiectasia mutated; BICR, blinded independent central review; BID, twice daily; BRCA1/2, breast cancer type 1/2 susceptibility protein; HRR, homologous recombination repair; mCRPC, metastatic castration resistant prostate cancer; NHA, new hormonal agent; OS, overall survival; PCWG3, Prostate Cancer Working Group 3; RECIST, Response Evaluation Criteria In Solid Tumours; rPFS, radiographic progression-free survival; QD, once daily de Bono J, et al. N Engl J Med. 2020;382:2091-102; Hussain M, et al. N Engl J Med. 2020;383(24):2345-57

PROfound: OLAPARIB MONOTHERAPY IMPROVES rPFS COMPARED TO NHA RECHALLENGE

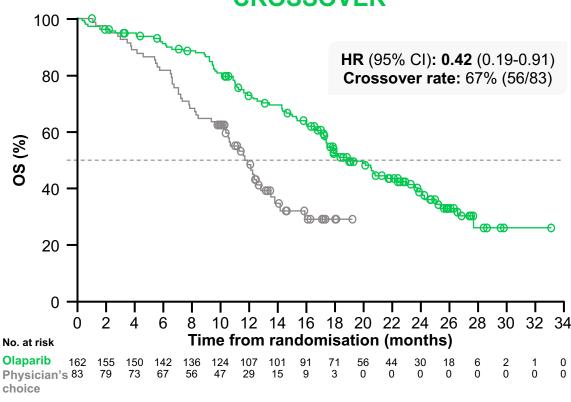
BRCA1 and/or BRCA2

No. at risk Time from randomisation (months)

Olaparib 102 93 87 83 78 77 67 66 48 45 36 33 23 22 16 8 8 2 2 0 0 0 0 Physician's 58 56 30 27 10 10 6 5 4 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 choice


COHORT A. PFS by BICR assessment, data maturity=71%. Data cut-off date: 4 June 2019

^a The study was not powered for gene-by-gene analysis.


PROfound: 31% REDUCTION IN DEATH WITH OLAPARIB MONOTHERAPY COMPARED TO NHA RECHALLENGE

COHORT A: BRCA1/2 OR ATM MUTATIONS

COHORT A WITH ADJUSTMENT FOR CROSSOVER^A

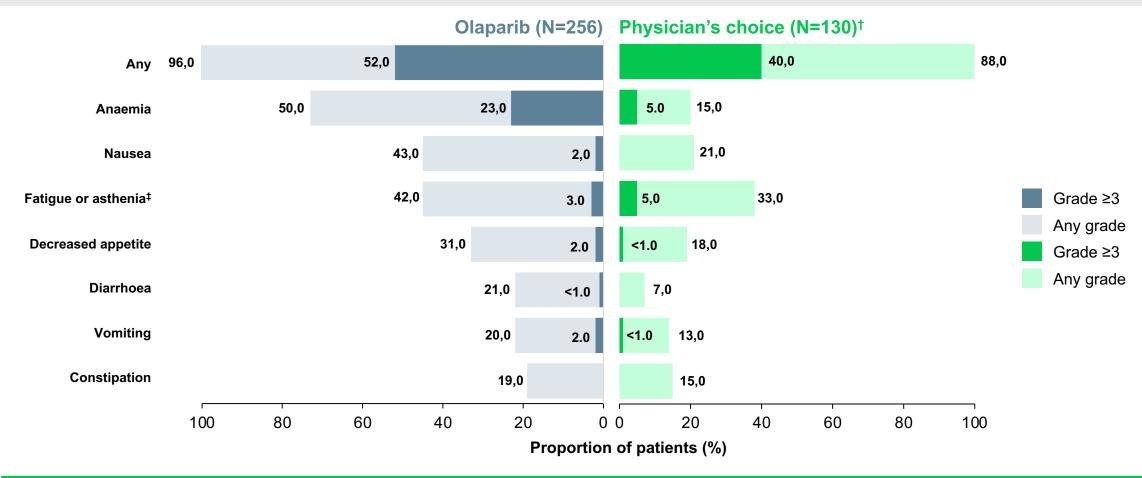
Adapted from: Hussain M, et al. N Engl J Med. 2020;383:2345-57

Median follow-up duration for censored patients: olaparib, 21.9 months; control, 21.0 months

^a Re-censored; conducted using rank-preserving structural failure time model to demonstrate the impact on OS of crossover of patients from the control arm to receive olaparib as a first subsequent anticancer therapy CI, confidence interval; HR, hazard ratio; NHA, new hormonal agents; OS, overall survival

PROfound: GREATER ACTIVITY WITH OLAPARIB IN BRCAm BUT POSITIVE EFFECT SEEN WITH OTHER HRRm

	EXPLORATORY	BRCA1/2	2 or ATM	All H	RRmª	BRCA1 and	l/or <i>BRCA2</i>	A7	ГМ	CDI	K12
	GENE-LEVEL ANALYSES	Olaparib (N=162)	pcNHA (N=83)	Olaparib (N=256)	pcNHA (N=131)	Olaparib (N=102)	pcNHA (N=58)	Olaparib (N=62)	pcNHA (N=24)	Olaparib (N=61)	pcNHA (N=28)
-DEC	Median, months	7.4	3.6	5.8	3.5	9.8	3.0	5.4	4.7	5.1	2.2
rPFS	HR (95% CI)	0.34 (0.2	25–0.47)	0.49 (0.3	38–0.63)	0.22 (0.1	15–0.32)	1.04 (0.6	61–1.87)	0.74 (0.4	4–1.31)
os	Median OS, months	19.1	14.7	17.3	14.0	20.1	14.4	18.0	15.6	14.1	11.5
US	HR (95% CI)	0.69 (0.5	50-0.97)	0.79 (0.6	61–1.03)	0.63 (0.4	12–0.95)	0.93 (0.5	53–1.75)	0.97 (0.5	57–1.71)
ODD	Evaluable patients, n	84	43	138	67	57	33	30	10	34	12
ORR	(%)	33.3	2.3	21.7	4.5	43.9	0	10.0	10.0	5.9	0
DCA	Evaluable patients, n	153	77	243	123	94	54	61	22	58	27
PSA	Confirmed response, %	43.1	7.8	30.0	9.8	61.7	0	13.1	22.7	5.2	3.7
СТС	Evaluable patients, n	52	22	78	32	29	17	25	3	14	5
СТС	Conversion, %	55.8	22.7	52.6	21.9	69.0	23.5	40.0	33.3	50.0	40.0

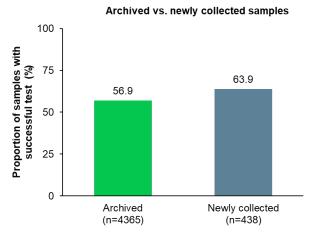

BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, or RAD54L

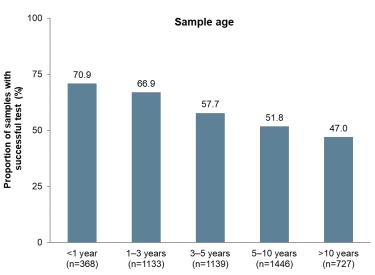
ATM, ataxia telangiectasia mutated; BRCA1/2, breast cancer gene 1/2; BRCAm, breast cancer gene 1/2 mutation; CI, confidence interval, CTC, circulating tumour count; HR, hazard ratio; ORR, overall response rate; OS, overall survival; pcNHA, physician's choice new hormonal agent; PSA, prostate-specific antigen; rPFS, radiographic progression-free survival

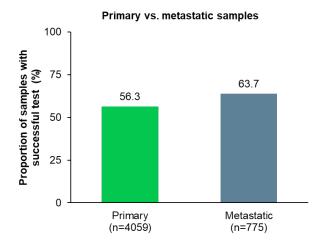
PROfound: MOST COMMON AEs (≥10% ANY GRADE) IN THE OVERALL POPULATION*

At the final OS DCO, median duration of treatment was 7.6 months in the olaparib arm and 3.9 months in the control arm

^{*} Most common AEs associated with treatment with PARP inhibitors. Patients had alterations in *BRCA1*, *BRCA2*, *ATM*, *BARD1*, *BRIP1*, *CDK12*, *CHEK1*, *CHEK2*, *FANCL*, *PALB2*, *PPP2R2A*, *RAD51B*, *RAD51C*, *RAD51D*, and / or *RAD54L*. Note, there were no cases of myelodysplastic syndromes or AML. There has since been one fatal case of AML 54 days after discontinuation of olaparib. † One patient in the control group did not receive treatment. ‡ Grouped term.


AE, adverse event; AML, acute myeloid leukemia; DCO, data cut-off; OS, overall survival. 1. Hussain M, et al. N Engl J Med. 2020;383(24):2345-2357

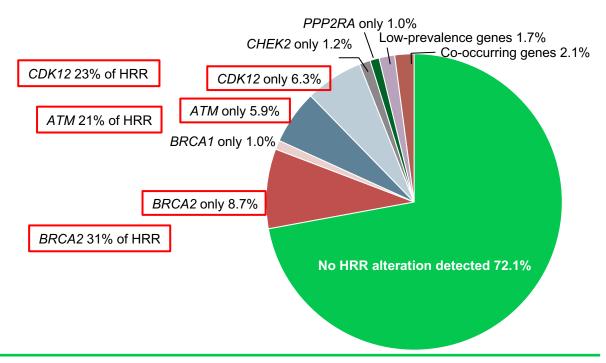

PROfound: TUMOUR TISSUE USED TO PROSPECTIVELY IDENTIFY PATIENTS WITH




HRRm

- A total of 4,858 samples were tested and reported by FMI during screening
- Majority of samples were derived from archived tissue (N=4,365) and from the primary tumour (N=4,059)
- Success rates higher with newly collected vs. archived samples and metastatic sites vs. primary tumour

PROfound: ~ 30% OF SCREENED PATIENTS WERE IDENTIFIED WITH A QUALIFYING HRRm


A similar proportion of patients were identified with HRRm, irrespective of whether the tissue was derived from the primary tumour or metastatic deposits

HRR gene alteration prevalence in primary and metastatic tumour samples from screened patients¹

	HRR gene alteration prevalence (%)
All patients	27.9
All primary tumours	27.2
Archived primary	27.1
Newly collected primary	28.9
All metastatic tumours	31.8
Archived metastatic	33.2
Newly collected metastatic	29.5

BRCA2, ATM and CDK12 were the most prevalent HRRm identified

Overview of HRR gene profile in patients screened for the PROfound study with a reported biomarker (n=2792)^{1a}

^a Patients with multiple genes are included across more than one gene ATM, ataxia telangiectasia mutated; BRCA1/2, breast cancer gene 1/2; HRR(m), homologous recombination repair (mutation)

TRITON2: OPEN LABEL, SINGLE-ARM, PHASE 2 STUDY OF RUCAPARIB IN mCRPC PATIENTS

Screening

Identification of a deleterious somatic or germline alteration in HRR gene*

HRR genes

BRCA1 RAD51B BARD1 **FANCA** BRCA2 RAD51C BRIP1 NBN CDK12 PALB2 RAD51D CHEK2 RAD51 RAD54L

Key eligibility criteria

- mCRPC
- Deleterious somatic or germline alteration in HRR gene
- Disease progression on AR-directed therapy (eg, abiraterone, enzalutamide, or apalutamide) for PC and 1 prior taxane-based chemotherapy for CRPC
- ECOG PS 0 or 1
- No prior PARP inhibitor, mitoxantrone, cyclophosphamide, or platinum-based chemotherapy

Treatment 28-day cycles

Rucaparib 600 mg BID

- Tumour assessments every 8 weeks for 24 weeks, then every 12 weeks
- PSA assessments every 4 weeks

Treatment until radiographic progression or discontinuation for other reason

Primary endpoints[†]

ATM

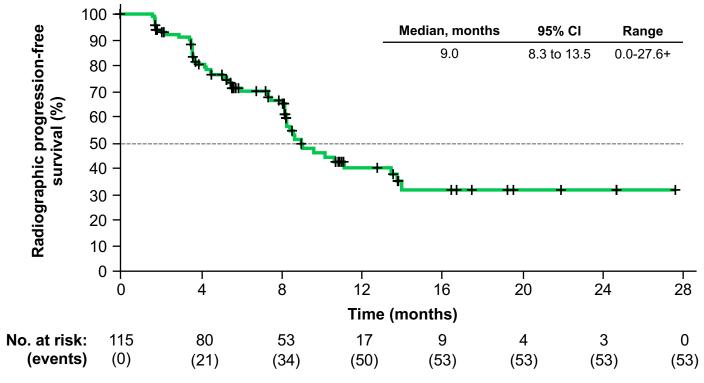
- Patients with measurable disease at baseline: confirmed ORR per modified RECIST/PCWG3 by central assessment
- Patients with no measurable disease at baseline: confirmed PSA response (≥50% decrease) rate §

^{*}Alterations detected by local testing or central testing of blood or tumour samples. † Efficacy analyses in TRITON2 will be conducted separately based on HRR gene with alteration and presence/absence of measurable disease. [‡] RECIST modified to include up to 10 target lesions, maximum 5 per site, not including prostatic bed or bone lesions; MRI allowed. [§] The proportion of patients with a ≥50% decrease from baseline confirmed by a second consecutive measurement; PSA measurements performed by local laboratory.

TRITON2: RUCAPARIB HAS ANTI-TUMOUR ACTIVITY IN mCRPC PATIENTS WITH *BRCA1/2* ALTERATIONS¹

Response	Investigator-evaluable population (N=65)	IRR-evaluable population (N=62)		
Confirmed ORR, n (% [95% CI]) ^a	33 (50.8 [38.1-63.4])	27 (43.5 [31.0-56.7])		
Complete response, n (%)	4 (6.2)	7 (11.3)		
Partial response, n (%)	29 (44.6)	20 (32.3)		
Stable disease, n (%)	25 (38.5)	28 (45.2)		
Progressive disease, n (%)	6 (9.2)	6 (9.7)		
Not evaluable, n (%)	1 (1.5)	1 (1.6)		
	Overall efficacy population (N=115)			
Confirmed PSA, n (% [95% CI])	63 (54.8 [45.2-64.1])			

Visit cutoff date: December 23, 2019.


Patients harbouring an ATM or CDK12 alteration did not receive significant benefit²

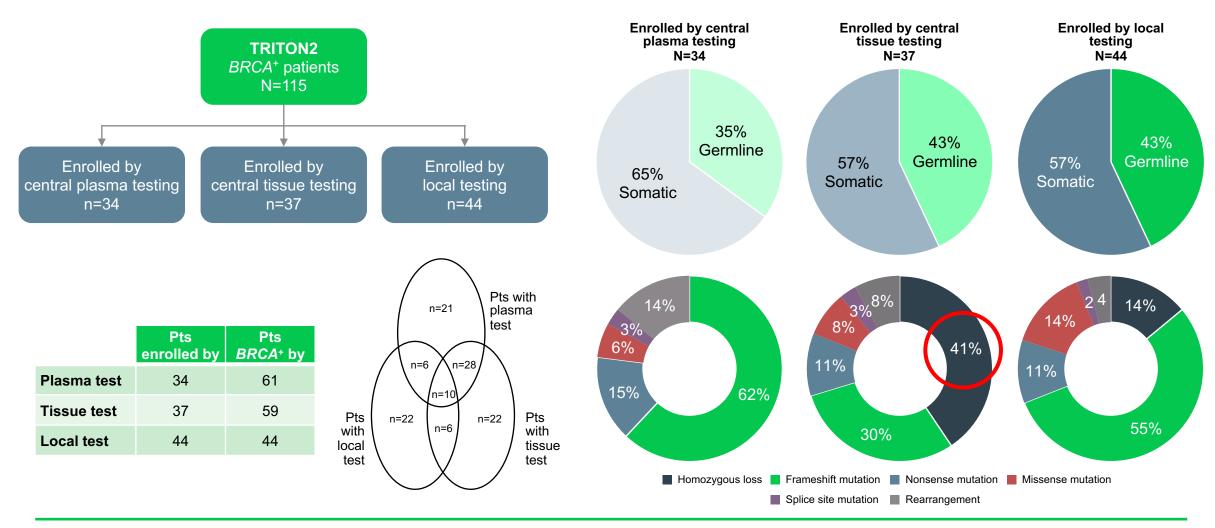
^a Per modified RECIST/Prostate Cancer Clinical Trials Working Group 3 criteria.

TRITON2: RUCAPARIB ACHIEVED A MEDIAN rPFS OF 9 MONTHS IN mCRPC PATIENTS WITH BRCA ALTERATIONS

FDA granted accelerated approval based on data from TRITON2

rPFS by blinded independent radiology review assessment. Visit cutoff date: December 23, 2019. Progression was assessed per modified RECIST/PWCG3 criteria.

TRITON2: RUCAPARIB SIDE EFFECTS



Individual TEAE (preferred terms) occurring in ≥15% of patients	Any grade	Grade ≥3
Asthenia/fatigue	71 (61.7)	10 (8.7)
Nausea	60 (52.2)	3 (2.6)
Anaemia/decreased hemoglobin	50 (43.5)	29 (25.2)
ALT/AST increased	38 (33.0)	6 (5.2)
Decreased appetite	32 (27.8)	2 (1.7)
Constipation	31 (27.0)	1 (0.9)
Thrombocytopenia/decreased platelets	29 (25.2)	11 (9.6)
Vomiting	25 (21.7)	1 (0.9)
Diarrhoea	23 (20.0)	0
Dizziness	21 (18.3)	0
Blood creatinine increased	18 (15.7)	1 (0.9)

TRITON2: HRRm IDENTIFIED VIA TISSUE OR ctDNA

GENOMIC TESTING BY ASSAY TYPE

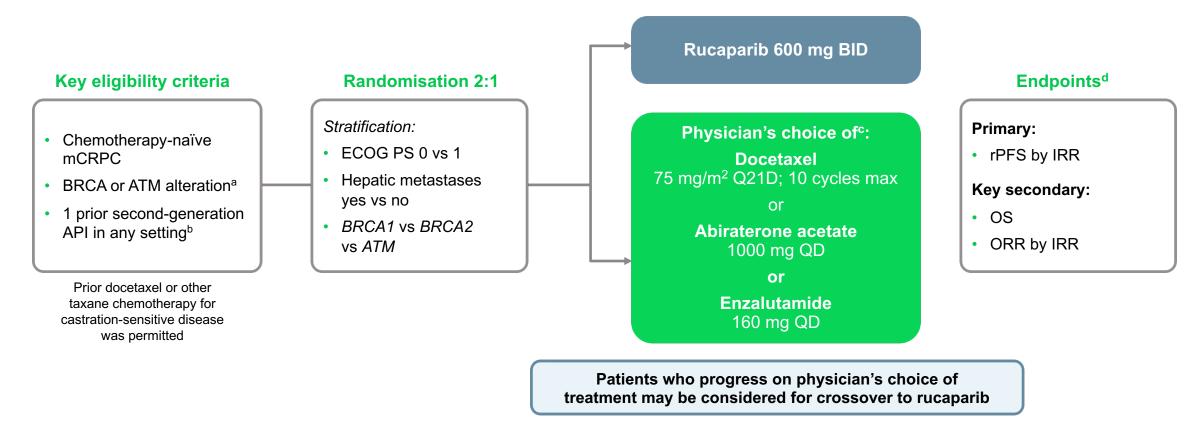
TRITON2: CONCORDANCE BETWEEN TISSUE AND ctDNA TESTING

 There is high concordance between liquid and tissue biopsy

BRCA/ATM variant subtype detection sensitivity in ctDNA and tissue

	Sensitivity of detection in tumour tissue			Sensitivity of detection in ctDNA		
		Detected in tumour tissue and ctDNA	Detected in tumour tissue only	Detected in ctDNA		Detected in ctDNA only
Frameshift/indel	96	83 (86%)	13 (14%)	110	83 (75%)	27 (25%)
Homozygous loss	30	8 (27%)	22 (73%)	7	7 (100%)	0
Large rearrangement	24	15 (63%)	9 (37%)	23	16 (70%)	7 (30%)
Nonsense	28	26 (93%)	2 (7%)	32	26 (81%)	6 (19%)
Splice	15	13 (87%)	2 (13%)	26	13 (50%)	13 (50%)
Missense	4	1 (25%)	3 (75%)	9	1 (11%)	8 (89%)
Total	197	146 (74%)	51 (26%)	207	146 (71%)	61 (29%)

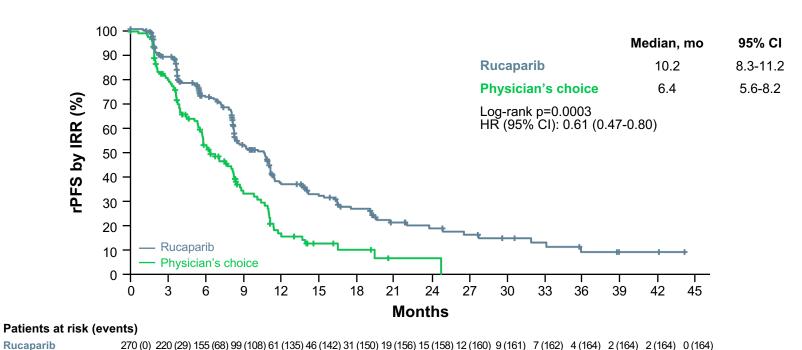
Concordance between tumour tissue and ctDNA testing determined by positive and negative percentage agreements


	Tissue BRCA/ ATM mutation detected (T ⁺)	Tissue BRCA/ ATM mutation not detected (T ⁻)	Total
Plasma (ctDNA) BRCA/ <i>ATM</i> mutation detected (P+)	143 (81%; T+/P+)	24 (8%; T⁻/P⁺)	167
Plasma (ctDNA) BRCA/ <i>ATM</i> mutation not detected (P ⁻)	33 (19%; T+/P-)	291 (92%; -/P-)	324
Total	176	315	491
	T+/P+: 81% (95% CI, 75- 87)	T ⁻ /P ⁻ : 92% (95% CI, 89- 95)	PPV = 0.68 NPV = 0.96

 However, sequencing on ctDNA might miss a significant proportion of BRCA2 homologous loss

TRITON3 STUDY DESIGN

CONFIRMATORY STUDY FOR ACCELERATED APPROVAL OF RUCAPARIB

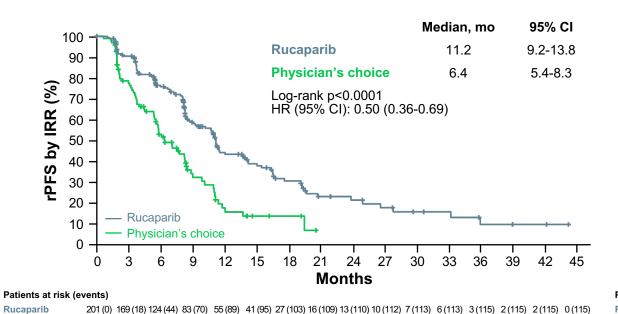


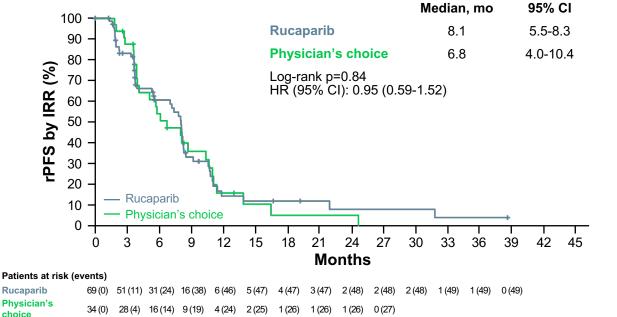
Visit cutoff date: 25 August 2022. ^a Determined by Foundation Medicine testing of tissue or plasma. ^b Protocol amendment June 19, 2018: patients' qualifying second-generation API could be in any setting. ^c If chosen, patients received whichever second-generation API had not yet been received. ^d Tumour assessments were conducted at baseline and every 8 weeks for 24 weeks, then every 12 weeks, via CT/MRI and technetium-bone scans.

API, androgen pathway inhibitor; ATM, ataxia telangiectasia mutated; BID, twice daily; BRCA, breast cancer gene; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group performance status; IRR, independent radiology review; mCRPC, metastatic castration-resistant prostate cancer; MRI, magnetic resonance imaging; ORR, objective response rate; OS, overall survival; Q21D, every 21 days; QD, daily; rPFS, radiographic progression-free survival

TRITON3: RUCAPARIB IMPROVES rPFS VS PHYSICIAN'S CHOICE IN ITT POPULATION

Physician's choice 135 (0) 97 (25) 58 (56) 28 (74) 13 (88) 6 (91) 4 (92) 1 (93) 1 (93) 0 (94)


Data maturity: 64% (258/405). The ATM subgroup completed enrolment in December 2019

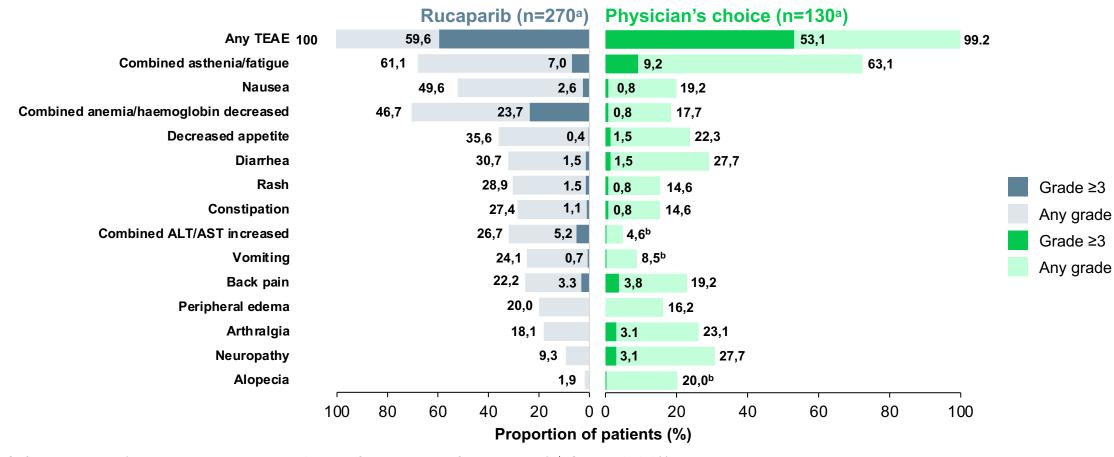

TRITON3: RUCAPARIB IMPROVES rPFS VS PHYSICIAN'S CHOICE IN BRCA SUBGROUP

rPFS by IRR in the BRCA subgroup

rPFS by IRR in the ATM subgroup

Data maturity: 60% (182/302). BRCA subgroup, BRCA1 and BRCA2

101 (0) 69 (21) 42 (42) 19 (55) 9 (64) 4 (66) 3 (66) 0 (67)


Physician's

choice

Data maturity: 74% (76/103). The ATM subgroup completed enrollment in December 2019

TRITON3: MOST COMMON TEAEs (≥20% ANY GRADE)

^a Safety population (all patients who received ≥1 dose of protocol-specified treatment). ^b Grade ≥3, 0.8%

WHERE DO PARPI'S FIT IN THE mCRPC TREATMENT LANDSCAPE?

PARP INHIBITORS ARE APPROVED IN PROSTATE CANCER^{1,2}

Olaparib FDA-approved indication¹

Indicated as **monotherapy** for the treatment of adult patients with **mCRPC** and **HRRm**, who have **progressed** on enzalutamide or abiraterone acetate, selected using an **FDA-approved** Lynparza **companion diagnostic**

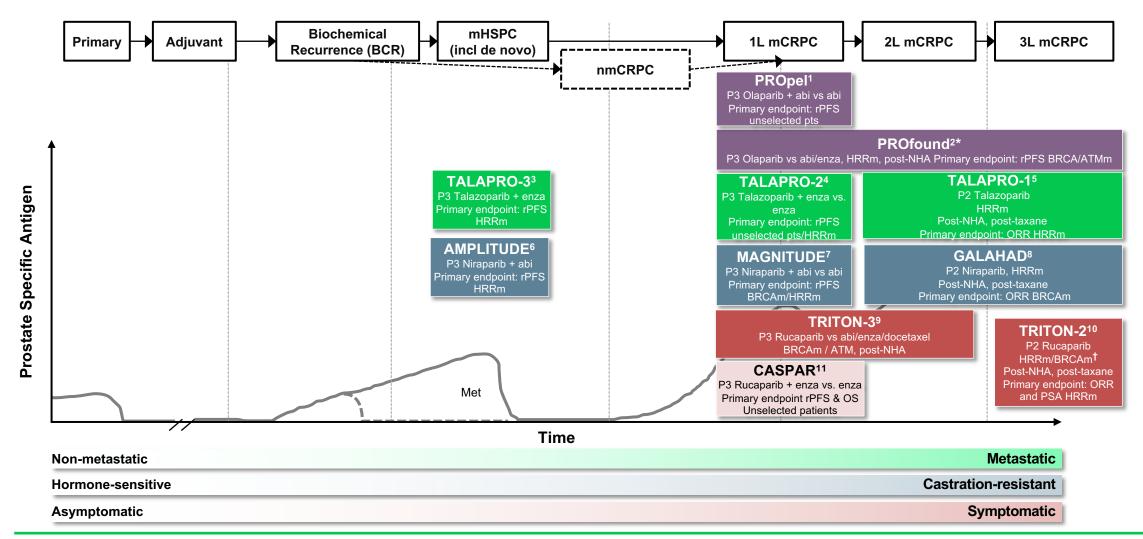
Rucaparib FDA-approved indication³

Indicated as **monotherapy** for the treatment of adult patients with **BRCAm** mCRPC who have **progressed on** AR-directed therapy and a **taxane**^a

Olaparib EMA-approved indication²

Indicated as **monotherapy** for the treatment of adult patients with **mCRPC** and a **BRCAm**, who have **progressed** on an **NHA**. Determine **BRCAm** status with a **validated test method**^b

- Treatment should continue until progression or unacceptable toxicity. An LHRH analogue should be continued in patients who are
 not surgically castrated^{1,2}
- Talazoparib and niraparib are not currently approved in prostate cancer


^aRucaparib is FDA-approved for the treatment of adult patients with a deleterious *BRCA*m-associated mCRPC who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (no current approval in prostate cancer in Europe)^{3; b}olaparib has received a positive recommendation from the EMA CHMP to be used in combination with abiraterone and prednisone or prednisolone for the treatment of adult patients with mCRPC in whom chemotherapy is not clinically indicated

AR, androgen receptor; BRCAm, breast cancer gene mutation; EMA, European Medicines Agency; FDA, US Food and Drug Administration; HRRm, homologous recombination repair mutation; LHRH, luteinising hormone-releasing hormone; mCRPC, metastatic castration-resistant prostate cancer; NHA, new hormonal agent; PARP, poly-ADP ribose polymerase

1. Lynparza (olaparib) US prescribing information (Aug-2022); 2. Lynparza (olaparib) summary of product characteristics (Sep 2022); 3. Rubraca (rucaparib) US prescribing information; 4. Lynparza: Pending EC decision | European Medicines Agency (europa.eu);

THERE ARE MULTIPLE TRIALS INVESTIGATING THE USE OF PARP INHIBITORS IN PROSTATE CANCER¹⁻¹¹

Please see slide notes for references. ^a As a result of the data from PROfound, olaparib monotherapy was approved for treatment of mCRPC in patients with HRR mutations (FDA approval) or for patients with mutations in only *BRCA1/2* (EMA approval) after progression on a NHA^{12,13; b} As a result of the data from TRITON2, rucaparib monotherapy was approved by the FDA only for the treatment of mCRPC in patients with a *BRCA1/2*m who have disease progression after treatment with prior AR-directed therapy and prior taxane¹⁴

Abi, abiraterone; BCR, biochemical recurrence; Enza, enzalutamide; FDA, US Food and Drug Administration; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; mHSPC, metastatic hormone-sensitive prostate cancer; NHA, new hormonal agent; nmCRPC, non-metastatic castration-resistant prostate cancer; Ola, olaparib; P, phase; PSA, prostate-specific antigen

PARPi's BEYOND PROSTATE CANCER

AVAILABLE PARP INHIBITORS AND THEIR CURRENT TUMOUR INDICATIONS

	Olaparib	Rucaparib	Niraparib	Talazoparib
Single-agent dose (approved for olaparib, rucaparib, niraparib, and talazoparib)	300 mg BID	600 mg BID	200/300 ^d mg QD	1 mg QD
Tumour indications	Ovarian cancer, breast cancer, pancreatic cancer, prostate cancer ^{1,2,3,a,b}	Ovarian cancer, ^{4,5} prostate cancer ^{5,c}	Ovarian cancer ^{6,7}	Breast cancer ^{8,9}

^a Olaparib is FDA-approved for the treatment of adult patients with deleterious or suspected deleterious germline or somatic HRR mutation-positive mCRPC who have progressed following prior treatment with enzalutamide or abiraterone¹

(no current approval in prostate cancer in Europe)⁴

AR, androgen receptor; BID, twice daily; CHMP, Committee for Medicinal Products for Human Use; EMA, European Medicines Agency; QD, once daily; EMA, European Medicines Agency; FDA, Food and Drug Administration; HRR, homologous recombination repair; mCRPC, metastatic castration-resistant prostate cancer; NHA, new hormonal agent; PARP, poly-ADP ribose polymerase

1. Olaparib PI; 2. Olaparib SmPC; 3. Lynparza: Pending EC decision | European Medicines Agency (europa.eu); 4. Rucaparib SmPC; 5. Rucaparib PI; 6. Niraparib PI; 7. Niraparib SmPC; 8. Talazoparib SmPC; Talazoparib PI. All accessed November 2022.

^b Olaparib is EMA-approved as monotherapy for the treatment of adult patients with mCRPC and *BRCA1/2* mutations (germline and/or somatic) who have progressed following prior therapy that included an NHA² and has received a positive recommendation from the EMA CHMP to be used in combination with abiraterone and prednisone or prednisolone for the treatment of adult patients with mCRPC in whom chemotherapy is not clinically indicated³

^c Rucaparib is FDA-approved for the treatment of adult patients with a deleterious *BRCA* mutation-associated mCRPC who have been treated with AR-directed therapy and a taxane-based chemotherapy

^d Niraparib FDA-approved dose is 300 mg QD and EMA approved dose is either 200 or 300 mg QD depending on weight and other factors

AE PROFILES OF PARPI FROM MONOTHERAPY TRIALS ACROSS DIFFERENT TUMOUR TYPES

Frequency of AEs in prostate cancer trials – All Grade (Grade ≥3)	Olaparib (PROfound) ¹	Rucaparib (TRITON2) ²	Niraparib (GALAHAD)³	Talazoparib (TALAPRO-1) ⁴
Hypertension %	NR	NR	11.8 (4.2)	5.5 (3.1)
Increased ALT/AST %	NR	33.0 (5.2)	12.8 (2.8)	11.8 (2.4)
Insomnia %	NR	NR	8.3 (0.3)	NR
Alopecia %	NR	NR	NR	NR

Frequency of AEs in ovarian and breast cancer trials – All Grade (Grade ≥3)	Olaparib (SOLO-2) ⁵	Rucaparib (ARIEL3) ⁶	Niraparib (NOVA) ⁷	Talazoparib (EMBRACA) ⁸
Hypertension %	NR	9.7 (2.4)	19.3 (8.2)	NR
Increased transaminases %	NR	34.7 (10.2)	NR	NR
Insomnia %	NR	14.5 (0.0)	24.3 (0.3)	NR
Alopecia %	NR	NR	NR	25.2 (0.0)

Please note that head-to-head studies were not conducted between these products. This data is for information purposes only, and no comparative claims of non-inferiority or superiority in terms of efficacy or safety are implied or intended. AEs highlighted in red if value ≥10%

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; NR, not reported; PARPi, poly-ADP ribose polymerase inhibitor

^{1.} Hussain M, et al. New Engl J Med. 2020;383:2345-57; 2. Abida W, et al. J Clin Oncol. 2020;38(32):3763-72; 3. Smith MR, et al. Lancet Oncol. 2022;23(3):362-73;

^{4.} de Bono JS, et al. Lancet Oncol. 2021;22(9):1250-64; 5. Poveda A, et al. Lancet Oncol. 2021;22(5):620-31; 6. Ledermann A, et al. Lancet Oncol. 2020;21:710-22;

^{7.} Mirza MR, et al. New Engl J Med. 2016;375:2154-64; 8. Litton JK, et al. New Engl J Med. 2018;379:753-63 (supplementary appendix)

HAEMATOLOGICAL AE PROFILES OF PARPI FROM MONOTHERAPY TRIALS ACROSS DIFFERENT TUMOUR TYPES

Frequency and grade of cytopenias in prostate cancer trials	Olaparib (PROfound) ¹	Rucaparib (TRITON2) ²	Niraparib (GALAHAD) ³	Talazoparib (TALAPRO-1) ⁴
Anaemia Grade ≥3 (%)	23	25	33	31
Neutropenia Grade ≥3 (%)	NRª	7	10	8
Thrombocytopenia Grade ≥3 (%)	NRª	10	16	9

Frequency and grade of cytopenias in ovarian and breast cancer trials	Olaparib (SOLO-2) ⁵	Rucaparib (ARIEL3) ⁶	Niraparib (NOVA) ⁷	Talazoparib (EMBRACA) ⁸
Anaemia Grade ≥3 (%)	21	22	25	39
Neutropenia Grade ≥3 (%)	7	8	20	21
Thrombocytopenia Grade ≥3 (%)	2	5	34	15

Please note that head-to-head studies were not conducted between these products. This data is for information purposes only, and no comparative claims of non-inferiority or superiority in terms of efficacy or safety are implied or intended. AEs highlighted in red if value ≥10%

AE, adverse event; NR, not reported; PARPi, poly-ADP ribose polymerase inhibitor; TEAE, treatment-emergent adverse event

^aFrequency of grade 3 AEs not reported but 1% of patients experienced TEAE leading to treatment discontinuation

^{1.} Hussain M, et al. New Engl J Med. 2020;383:2345-57; 2. Abida W, et al. J Clin Oncol. 2020;38(32):3763-72 (supplementary appendix); 3. Smith MR, et al. Lancet Oncol. 2022;23(3):362-73;

^{4.} de Bono JS, et al. Lancet Oncol. 2021;22(9):1250-64; 5. Poveda A, et al. Lancet Oncol. 2021;22(5):620-31; 6. Ledermann A, et al. Lancet Oncol. 2020;21:710-22;

^{7.} Mirza MR, et al. New Engl J Med. 2016;375:2154-64; 8. Litton JK, et al. New Engl J Med. 2018;379:753-63 (supplementary appendix)

IN CONCLUSION

- PARP inhibitors are effective drugs as monotherapy in mCRPC patients with HRR alterations
- Genetic testing is important to help with treatment decision making and for understanding inherited risk
- BRCA mutations are associated with poor outcomes in mCRPC patients
- Patients with tumours harbouring BRCA1/BRCA2 alteration (especially HomDel) appear to derive the greatest clinical benefit from PARPi, but patients with other HRR alterations might also derive benefit
- Further work needed to understand predictive phenotypes (mutational signatures, HRD scores)

REACH GU CONNECT VIA TWITTER, LINKEDIN, VIMEO & EMAIL OR VISIT THE GROUP'S WEBSITE https://guconnect.cor2ed.com/

Email
sam.brightwell
@cor2ed.com

GU CONNECT
Bodenackerstrasse 17
4103 Bottmingen
SWITZERLAND

Dr. Froukje Sosef MD

+31 6 2324 3636

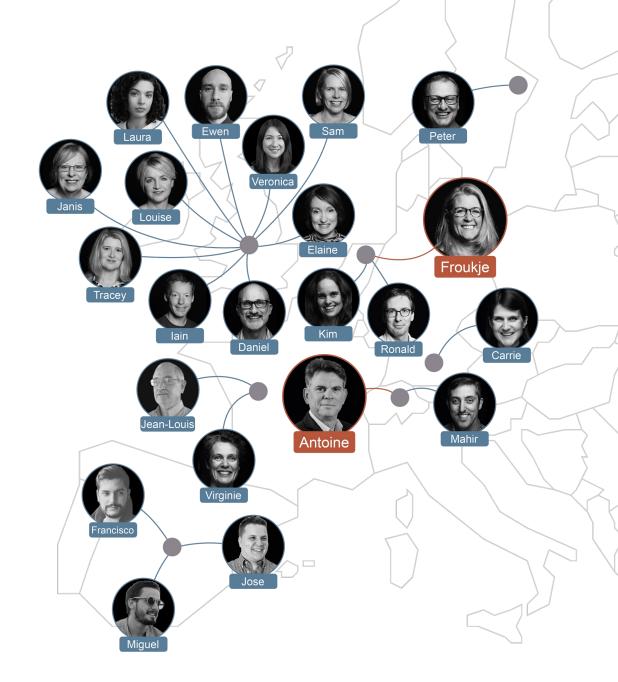
froukje.sosef@cor2ed.com

Dr. Antoine Lacombe Pharm D, MBA

+41 79 529 42 79

antoine.lacombe@cor2ed.com

Connect on LinkedIn @GU CONNECT


Visit us at https://guconnect.cor2ed.com/

Watch on Vimeo @GU CONNECT

Follow us on Twitter @guconnectinfo

