COR2ED THE HEART OF MEDICAL EDUCATION

PRECISION ONCOLOGY CONNECT

THE EVOLVING ROLE OF LIQUID BIOPSY

Assoc. Prof. Umberto Malapelle, PhD Molecular Pathologist, Department of Public Health, University of Naples Federico II, Naples, Italy

JULY 2024

DEVELOPED BY PRECISION ONCOLOGY CONNECT

This programme is developed by PRECISION ONCOLOGY CONNECT, an international group of experts in the field of oncology.

Acknowledgement and disclosures

POWERED BY COR2ED

This PRECISION ONCOLOGY CONNECT programme is supported through an independent educational grant from Bayer. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

Please note: The views expressed within this programme are the personal opinions of the experts. They do not necessarily represent the views of the experts' institutions, or the rest of the PRECISION ONCOLOGY CONNECT group.

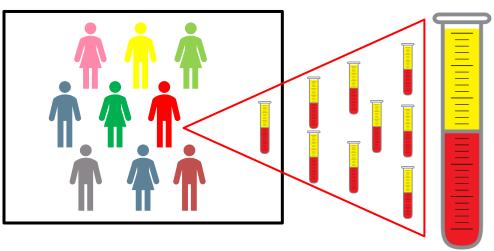
Expert disclosures – the experts have received financial support/sponsorship for research support, consultation, Travel or speaker fees from the following companies:

 Assoc. Prof. Umberto Malapelle, PhD: Amgen, AstraZeneca, Boehringer Ingelheim, Diaceutics, Diatech, Eli Lilly, GSK, Hedera, Janssen, Merck, MSD, Novartis, Roche, Thermo Fisher Scientific.

EDUCATIONAL OBJECTIVES

Upon completion of this activity, the learner will:

• Know the latest developments and practical recommendations on the role of liquid biopsy in precision oncology, and how to apply this across the patient journey

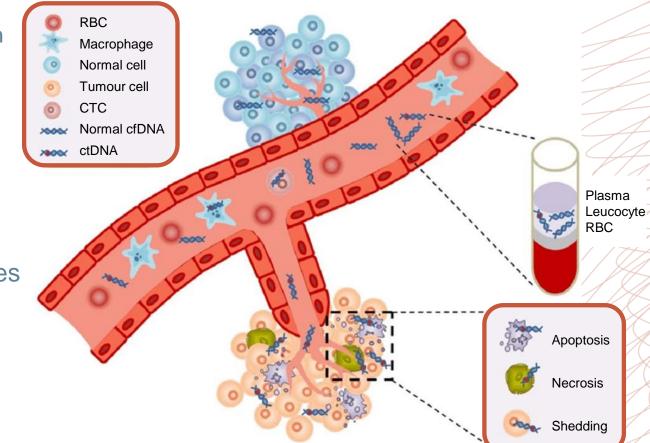

CLINICAL TAKEAWAYS

- Liquid biopsies offer a less invasive alternative to traditional tissue biopsies in patients with solid tumours, to examine molecular features
- The role of liquid biopsy should be seen as a complementary testing method to tissue-based assays and the information derived should be reviewed in combination with tissue results
- The clinical application of liquid biopsies ranges from screening and diagnosis, treatment guidance, monitoring minimal residual disease to assessing chemotherapy resistance

WHAT IS A LIQUID BIOPSY?

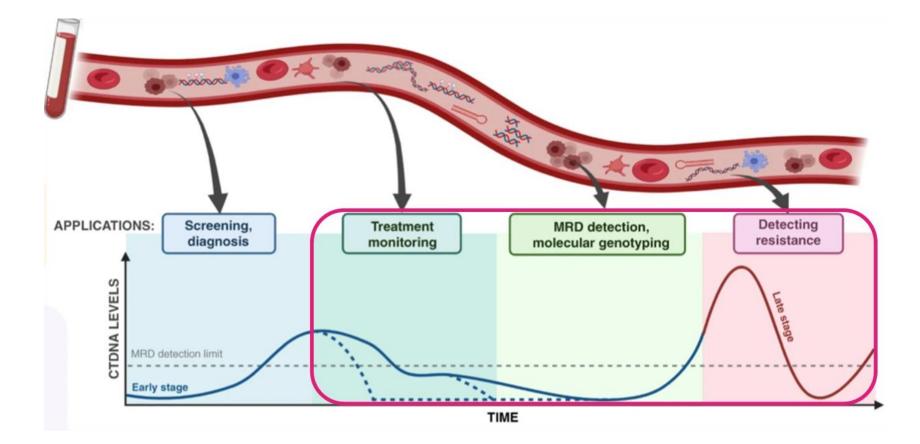
• A liquid biopsy can be derived from the blood and other body fluids, e.g., saliva, ascites fluid, urine, cerebrospinal and pleural fluid

LIQUID BIOPSY PERSONALISED MEDICINE

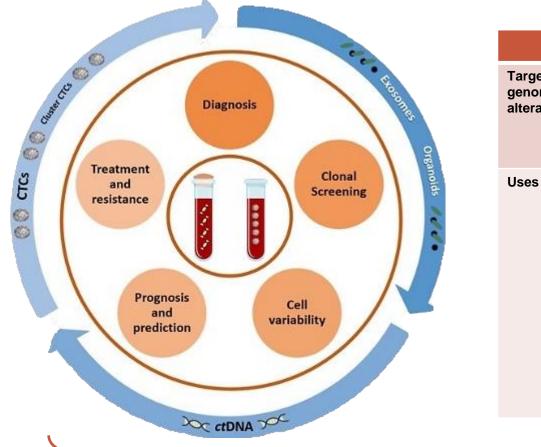


Enrichment and detection from plasma/serum of:

- Circulating tumour cells
- Circulating tumour nucleic acids (cell-free DNA, microRNA, mRNA, IncRNA)
- Circulating tumour microvesicles/exosomes


WHAT IS CELL-FREE DNA (cfDNA) AND CIRCULATING TUMOUR DNA (ctDNA)

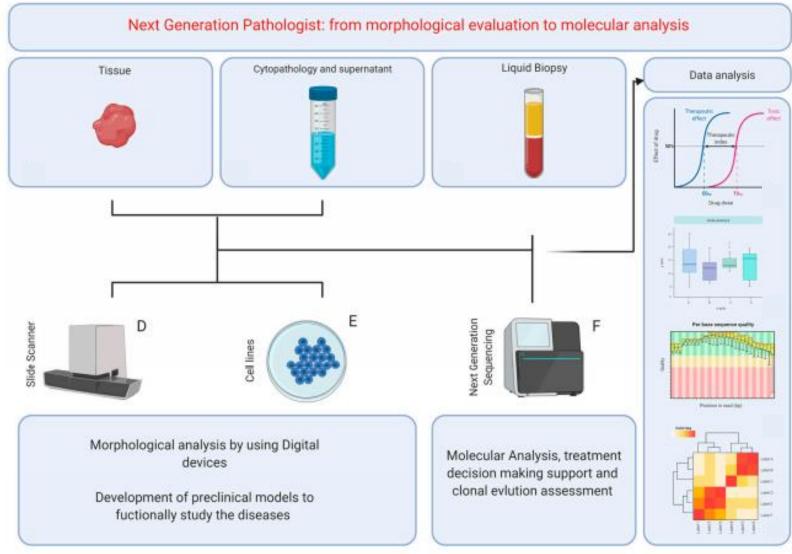
- cfDNA
 - dsDNA fragments associated with histones in circulation that have been released by cells
- Circulating tumour DNA (ctDNA)
 - cfDNA derived from cancer cells
 - Characterised by somatic, cancer-specific alterations, cancer-specific methylation patterns
- Most cfDNA is released by normal leukocytes
- Higher levels of ctDNA associated with:
 - Certain cancer subtypes
 - Higher burden of disease
 - Liver metastases


cfDNA, cell-free DNA, CTC, circulating tumour cell; ctDNA, circulating tumour DNA, dsDNA, double-stranded DNA; RBC, red blood cell Hahn AW, et al. Kidney Cancer 3, 2019;7-13; Qi T, et al. Int J. Mol Sci. 2023; 24: 1503; Sanchez-Herrero E, et al. Front. Oncol. 2022; 12: 943253; Parsons HA. ASCO 2024

ctDNA MAY HAVE UTILITY ACROSS THE DISEASE SPECTRUM

CT(ct)DNA, circulating tumour DNA; MRD, minimal residual disease García-Pardo M, et al. Br J Cancer. 2022;127:592-602

CHALLENGES AND OPPORTUNITIES OF cfDNA

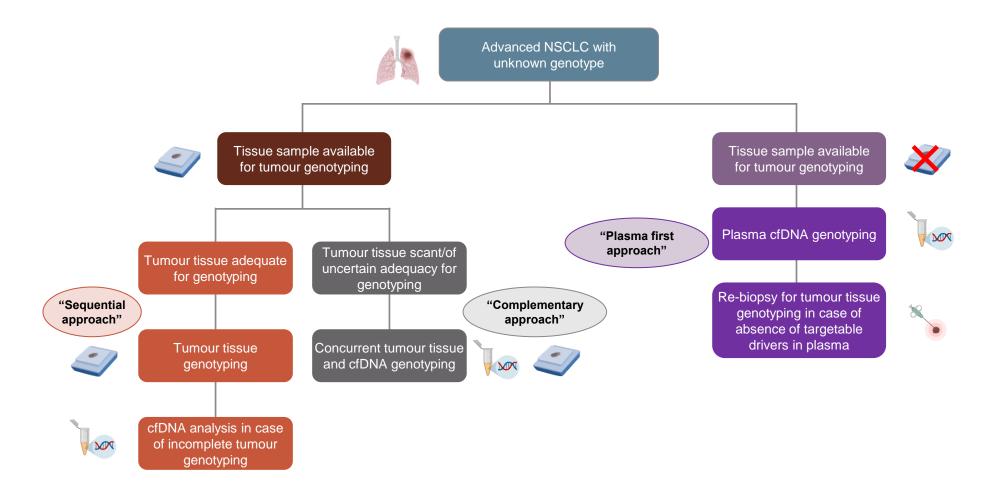

	Breast Cancer	Colorectal cancer	Lung Cancer
Targetable genomic alterations	 Gene amplifications Gene expression Genomic signatures 	Gene expressionGenomic signaturesGene mutations	 Mutations (insertions, deletions, etc) Translocations Gene amplifications Gene expression Genomic signatures
Jses	 BC CTCs based on prognosis cfRNA (miRNAs) in HER2 BC TEPs in BC diagnosis <i>PIK3CA</i> mutations in ctDNA <i>ESR1</i> mutations CancerSEEK BC early diagnosis cfDNA plasma levels and BC stages BC intra/intertumoural heterogeneity 	 Cancer screening Residual disease evaluation CRC CTCs prognosis score Prognostic assessment in early CRC <i>RAS</i> panel mutation status Prognostic significance of miRNAs Mechanism of acquired resistance to anti-EGFR drugs 	 Drug selection (1L) Resistance detection Early disease detection in high-risk populations bTMB measurement CTCs and lung cancer prognosis ctDNA detection in pleural and CSF PD1/PDL1 expression in CTCs and exosomes Alteration such as EGFR, KRAS, BRAF, ALK, ROS1, RET fusions, MET exon 14 skipping

Step forward to personalised treatment

1L, first line; ALK, anaplastic lymphoma kinase; BC, breast cancer; BRAF, b-Raf proto-oncogene; bTMB, blood-based tumour mutational burden; cfDNA/RNA, cell-free DNA/RNA; CRC, colorectal cancer; CSF, cerebrospinal fluid; CTC, circulating tumour cell; ctDNA, circulating tumour DNA; EGFR, epidermal growth factor; ESR1, estrogen receptor 1; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral oncogene homologue; MET, hepatocyte growth factor receptor; miRNA, micro-RNA; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; Ras, rat sarcoma; RET, rearranged during transfection; ROS1, ROS proto-oncogene 1, receptor tyrosine kinase; TEP, tumour-educated platelets

Rolfo C, et al. Crit Rev Oncol Hematol. 2020;151:102978

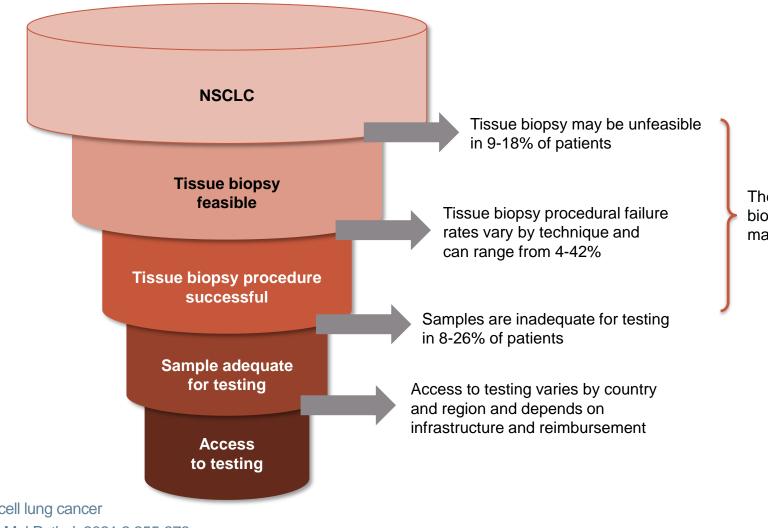
THE ROLE OF THE PATHOLOGIST IN THE NEXT-GENERATION ERA OF TUMOUR MOLECULAR CHARACTERISATION


Angerilli V, et al. Diagnostics (Basel). 2021;11:339

METHODOLOGICAL SCENARIO FOR MOLECULAR TESTING IN NSCLC PATIENTS

	Point mutations and Indels			Protein expression and gene fusions				
	Sanger Sequencing	Real Time PCR	Digital PCR	NGS	Immuno – histochemistry	Fluorescent in situ hybridisation	Multiplex digital colour-coded barcode	NGS
		\int		AGTIGCA AGTIGCA AGTIGCA AGTIGCA			640 640 640 640 640 640 640 640 640	AGTTGCA AGTTGCA AGTTGCA AGTTGCA
Limit of detection	10–20%	1–5%	0.1–1%	0.01–5%	Tissue based technique (protein)	Tissue based technique (DNA)	5–10%	0.01–5%
Reference Range	All the mutations present in the analysed gene regions	Only «hot spot» mutations (probe based)	Only «hot spot» mutations (probe based)	All the mutations present in the analysed gene regions	All the fusions - protein (antibody based)	Only specific fusions (probe based)	All the fusions present in the analysed gene regions	All the fusions present in the analysed gene regions
	FP FN	FP FN	FP FN	FP FN	FP FN	FP FN	FP FN	FP FN

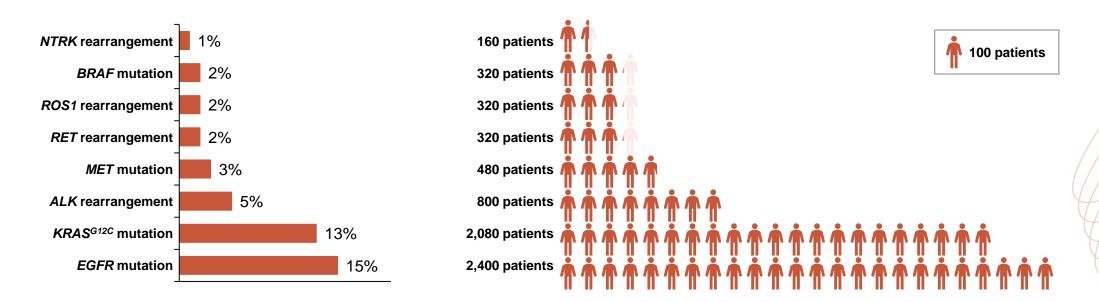
FN, false negative; FP, false positive; NGS, next generation sequencing; NSCLC, non-small cell lung cancer; PCR, polymerase chain reaction Passiglia F, et al. J Thorac Oncol. 2019;14:2046-2052


POSITIONING cfDNA GENOTYPING IN TREATMENT NAÏVE ADVANCED NSCLC

12

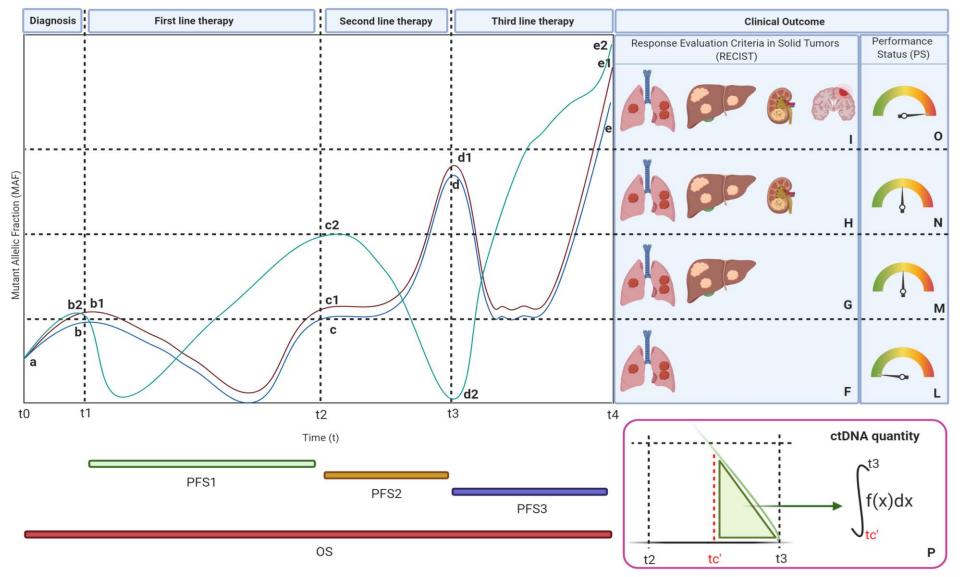
cfDNA, cell-free DNA; NSCLC, non-small cell lung cancer Rolfo C, et al. J Thorac Oncol. 2021;16:1647-1662

WHY PATIENTS MISS OUT ON BIOMARKER TESTING/DIAGNOSIS FROM TISSUE BIOPSY

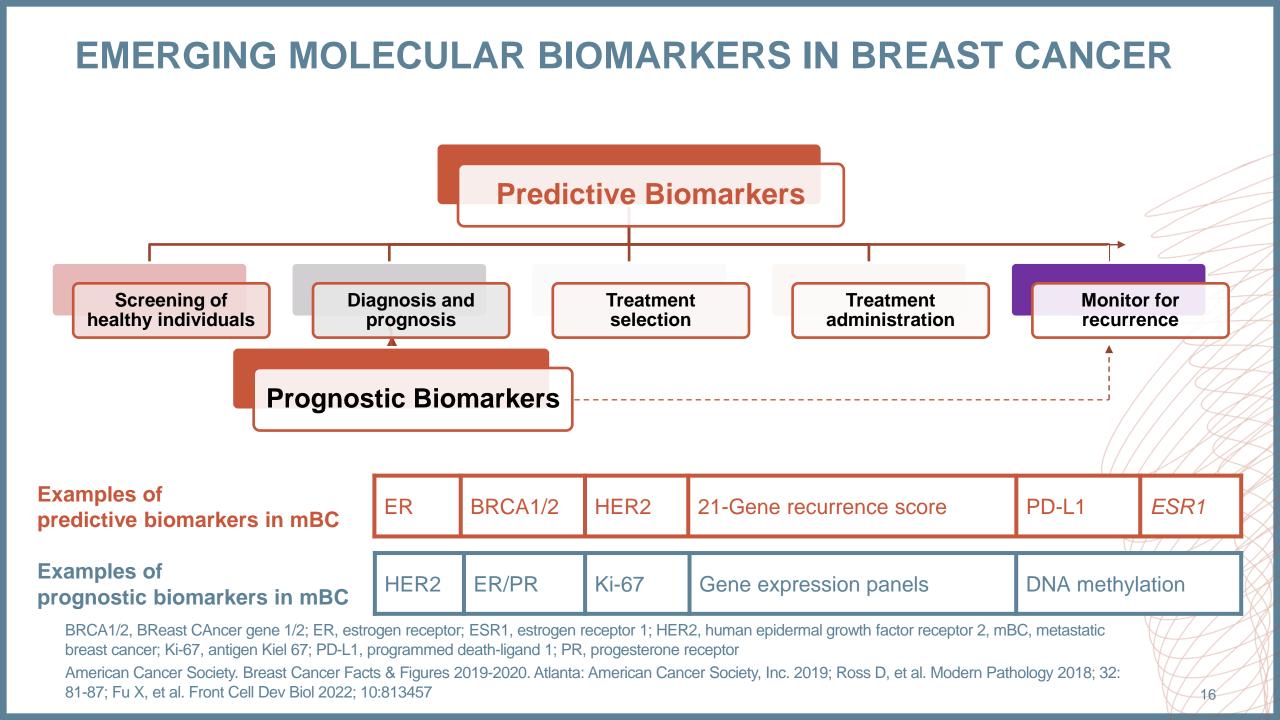


The overall tissue biopsy failure rate may be up to 43%

NSCLC, non-small cell lung cancer Malapelle U, et al. J Mol Pathol. 2021;2:255-273

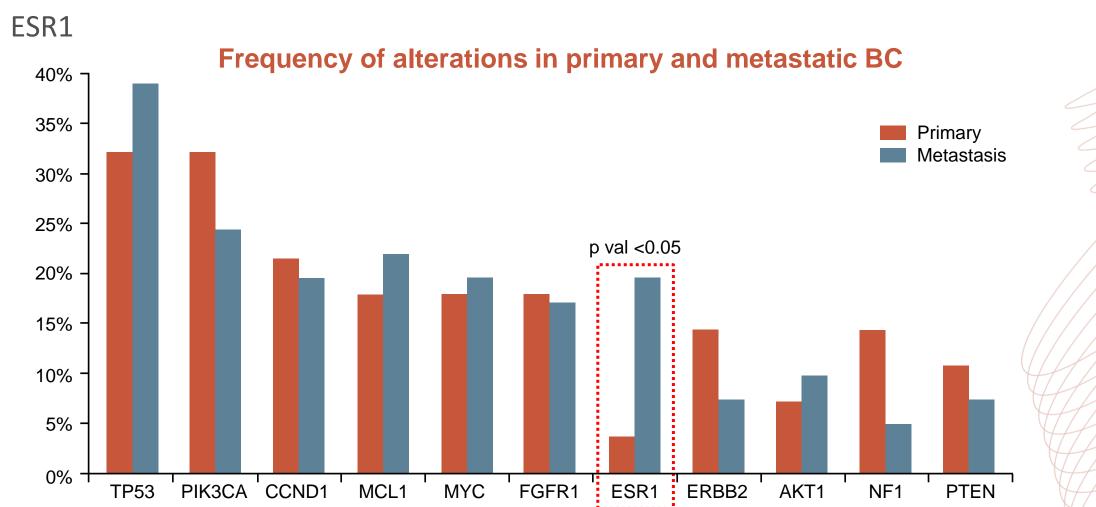

ESTIMATE OF PATIENTS IN EUROPE WHO MIGHT BENEFIT FROM LIQUID BIOPSY

In Europe, tissue biopsy may be unfeasible or inadequate, for molecular work-up in an estimated **16,000** patients annually with NSCLC; these patients could potentially benefit from liquid biopsy Based on published frequencies of NSCLC driver alterations, a molecular diagnosis based on liquid biopsy could allow approximately **6,560** patients annually to benefit from current, emerging, and future targeted treatments

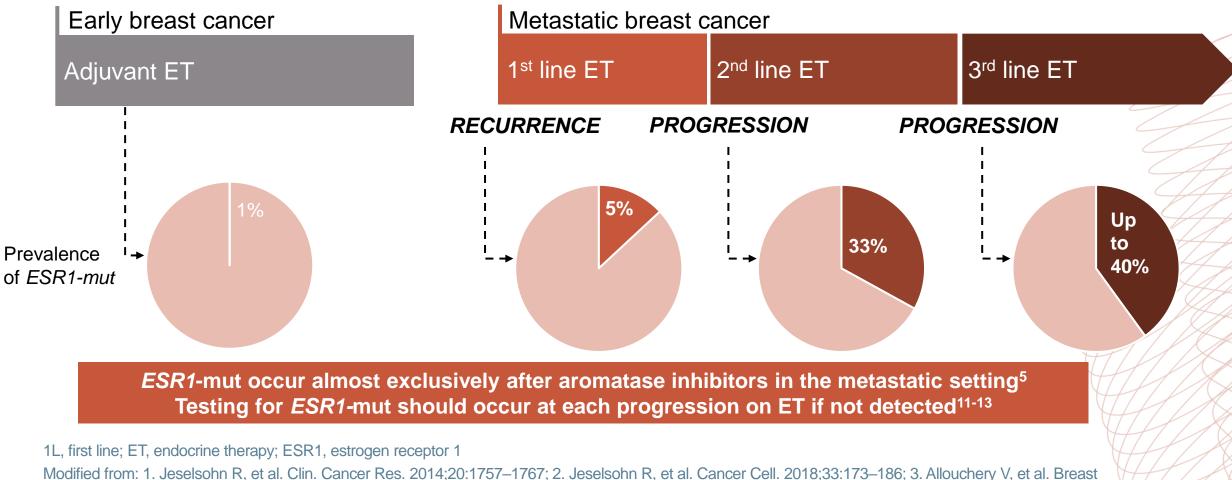


ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homologue; MET, hepatocyte growth factor receptor; NSCLC, non-small cell lung cancer; NTRK, neurotrophic tyrosine receptor kinase; RET, rearranged during transfection; ROS1, ROS proto-oncogene 1, receptor tyrosine kinase Malapelle U, et al. J Mol Pathol. 2021;2:255-273

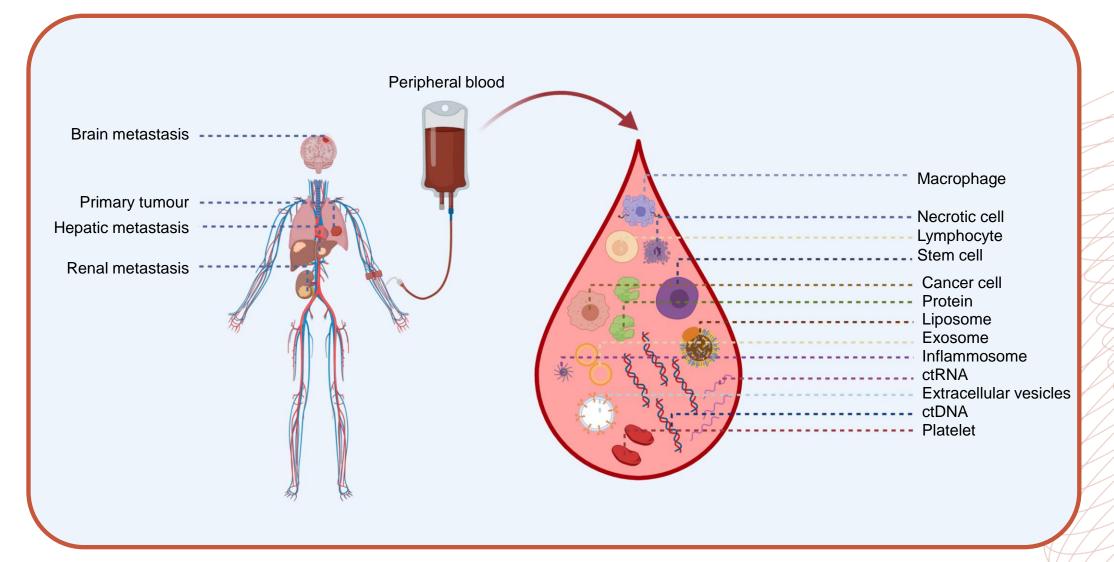
FOLLOWING TUMOUR EVOLUTION THROUGH LIQUID BIOPSY



ctDNA, circulating tumour DNA; OS, overall survival; PFS(1/2/3), progression-free survival (from start of first-, second-, third-line of treatment) Malapelle U, et al. Manuscript in preparation

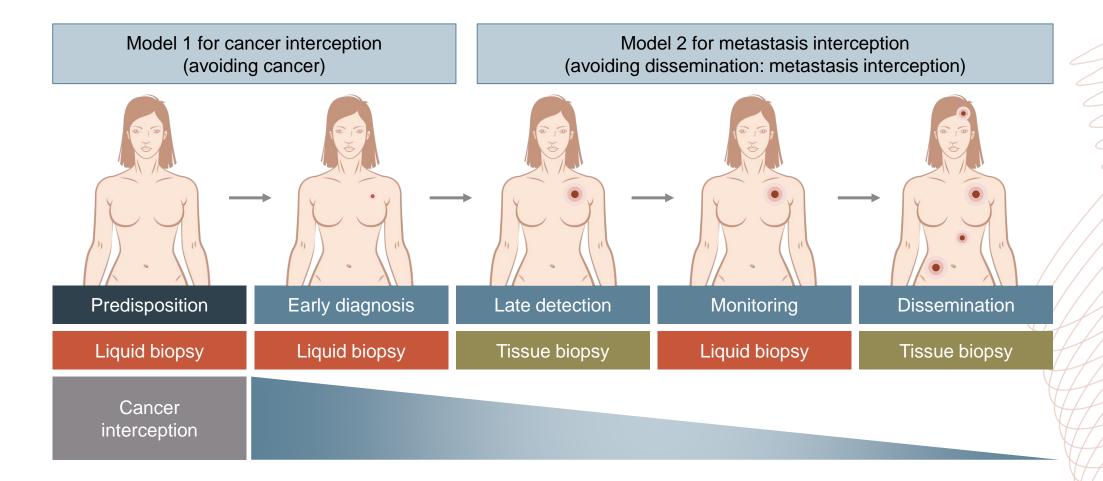

ESR1 MUTATION RATE IN mBC PATIENTS

THERE IS A SIGNIFICANT INCREASE IN DETECTION OF ESR1 ALTERATIONS IN METASTATIC SAMPLES


AKT1, AKT serine/threonine kinase 1; CCND1, cyclin D1; ERBB2, Erb-B2 Receptor Tyrosine Kinase 2; ESR1, estrogen receptor 1; FGFR1, fibroblast growth factor receptor 1; (m)BC, (metastatic) breast cancer; MCL1, induced myeloid leukaemia cell differentiation protein; MYC, myelocytomatosis oncogene; NF1, neurofibromin 1; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; PTEN1, phosphatase and tensin homologue; TP53, tumour protein 53; val, value Jeselsohn R, et al. Clin Cancer Res. 2014;20:1757-1767

LONGER EXPOSURE TO ET IN 1L INCREASES THE CHANCE OF DEVELOPING ESR1 MUTATION DURING TREATMENT

Modified from: 1. Jeselsonn R, et al. Clin. Cancer Res. 2014;20:1757–1767; 2. Jeselsonn R, et al. Cancer Cell. 2018;33:173–186; 3. Allouchery V, et al. Breast Cancer Res. 2018;20:40; 4. Schiavon G, et al. Sci Transl Med. 2015;7(313);313ra182. 5. Brett JO, et al. Breast Cancer Res. 2021;23(1):85; 6. Toy W, et al. Nat Genet. 2013;45(12):1439–1445; 7. Bidard FC et al. J Clin Oncol 2022;40:3246–3256; 8. Jhaveri et al, Annals of Oncology (2023) 34 (suppl_2): S334-S390. 10.1016/annonc/annonc1299; 9. Lin et al, Annals of Oncology (2023) 34 (suppl_2): S334–S390; 10.1016/annonc/annonc1299; 10. Bhave et al, SABCS 2023_PO2-1605; 11. Lee N, et al Int J Mol Sci. 2020;21(22):8807; 12. Gennari A, et al. Ann Oncol. 2021;32(12):1475–1495; 13. Burstein HJ, et al. J Clin Oncol. 2023;41(18):3423–3425.


THE "CANCER WORLD" IN A DROP

ctDNA, circulating tumour DNA; ctRNA, circulating tumour RNA Malapelle U, et al. Manuscript in preparation

LIQUID VS SOLID BIOPSIES IN CANCER INTERCEPTION

CHOICE OF SAMPLE DEPENDS ON REQUIREMENT

20

SUMMARY

- Liquid biopsy represents a dynamic, less invasive and easy-to-manage diagnostic tool for molecular analysis of actionable genes in clinical practice
- Among the heterogeneous landscape of technical approaches, dPCR and NGS platforms play a pivotal role in the diagnostic testing strategy of liquid biopsies
- ESR1 molecular analysis is essential in the therapeutic algorithm for ER+ HER2- BC patients
- Tissue and liquid biopsy derived molecular records are integrative for optimising clinical stratification of solid tumour patients

For more information visit

PRECISION

ONCOLOGY CONNECT

POWERED BY COR2ED

https://cor2ed.com/

Connect on

Visit us at

Follow us on Twitter <u>@ntrkconnectinfo</u>

Heading to the heart of Independent Medical Education since 2012