## METASTATIC PANCREATIC DUCTAL ADENOCARCINOMA (mPDAC): FROM DIAGNOSIS TO TREATMENT

**MICRO LEARNING MODULE ONE** 

## **DIAGNOSIS AND MANAGEMENT OF mPDAC**

Prof. Efrat Dotan Penn Medicine, Ann B. Barshinger Cancer Institute, PA, USA

> Prof. Shubham Pant MD Anderson Cancer Center, TX, USA

> > **DECEMBER 2024**

## **DEVELOPED BY GI CONNECT**

This programme is developed by GI CONNECT, an international group of experts in the field of gastrointestinal oncology.



#### Acknowledgement and disclosures

This GI CONNECT programme is supported through an independent educational grant from Ipsen USA. The programme is therefore independent, the content is not influenced by the supporter and is under the sole responsibility of the experts.

**Please note:** The views expressed within this programme are the personal opinions of the experts. They do not necessarily represent the views of the experts' institutions, or the rest of the GI CONNECT group.

#### Expert disclosures:

- Prof. Efrat Dotan has received financial support/sponsorship for research support, consultation, or speaker fees from the following companies: Amgen, Dragonfly, Gilead, Incyte, Ipsen, Kinnate, Leap therapeutics, Lutris, MedImmune, Merck, MERUS, Olympus, Pfizer, Relay, TME biopharmaceuticals, Zymeworks
- Prof. Shubham Pant has received financial support/sponsorship for research support, consultation, or speaker fees
  from the following companies: Alligator Bioscience, Amal Therapeutics, Arcus, AskGene Pharma, Astellas,
  AstraZeneca, BioNTech, Boehringer Ingelheim, BPGBio, Bristol-Myers Squibb, Elicio, Framewave, Immuneering,
  ImmunoMET, Ipsen, Janssen, Jazz, Lilly, Mirati Therapeutics, NGM Pharmaceuticals, Nihon Medi-Physics Co, Ltd,
  Novartis, Pfizer, Revolution Medicine, Theriva Biosciences, USWorldmeds, Zymeworks

#### THIS PROGRAMME HAS BEEN DEVELOPED BY EXPERTS





Prof. Shubham Pant MD Anderson Cancer Center, USA



## **EDUCATIONAL OBJECTIVES**

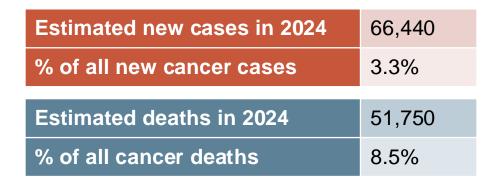
#### **Educational objectives**

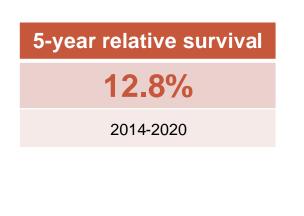
- 1. Be able to identify mPDAC early signs and symptoms to engage in the appropriate testing strategy for an early diagnosis
- 2. Be able to differentiate the efficacy and safety profiles of chemotherapies for mPDAC
- 3. Recognise how to **optimise** chemotherapies for patients with mPDAC, and understand the optimal **combination** of treatments

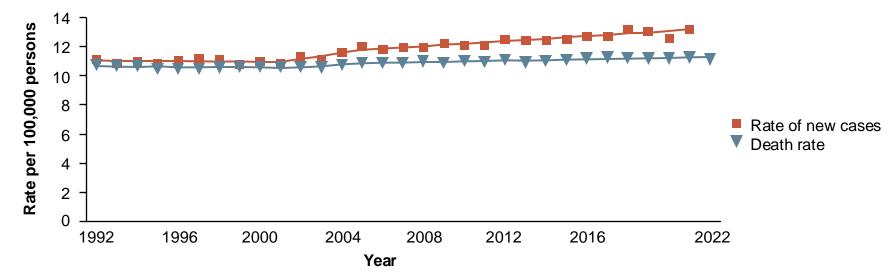
## **CLINICAL TAKEAWAYS**

- Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed at an advanced, incurable stage due to non-specific symptoms and has an extremely poor prognosis
- Recognition of symptoms and known risk factors is important for an early diagnosis
- Systemic chemotherapy is the standard treatment for mPDAC but molecularly targeted treatments and immunotherapies may have a role for specific patients
- Choice of treatment depends on several factors, including patients' performance status and co-morbidities

WHAT IS THE ISSUE?


## PANCREATIC DUCTAL ADENOCARCINOMA


- Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with poor prognosis and rising incidence and accounts for the majority (90%) of pancreatic neoplasms.<sup>1</sup> Typically after diagnosis, only 13% live for 5 years<sup>2</sup>
- PDAC is the third-leading cause of cancer mortality in the US and the seventh-leading cause worldwide.<sup>2,3</sup> It is projected to become the second-leading cause of cancer-related mortality by 2030<sup>3</sup>
  - Approximately 1.7% of men and women will be diagnosed with pancreatic cancer at some point during their lifetime<sup>2</sup>
- In 2024, estimated numbers in the US are:
  - 66,440 new cases (3.3% of all new cancer cases)<sup>2</sup>
  - 51,750 deaths (8.5% of all cancer deaths)<sup>2</sup>
- Pancreatic cancer is difficult to diagnose due to the lack of early symptoms and 80-90% of patients have unresectable tumours due to the advanced stage at diagnosis<sup>4</sup>
- Surgery, chemotherapy and radiation are the primary treatment options for pancreatic cancer<sup>1</sup>


US, United States

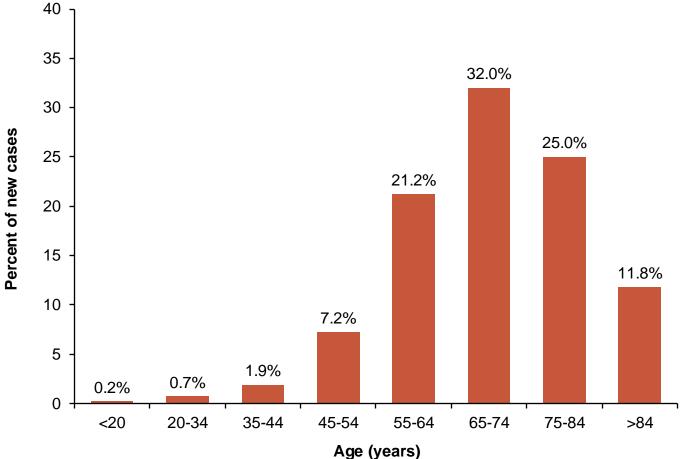
1. Orth M, et al. Radiat Oncol. 2019;14:141; 2. Cancer Stat Facts: Pancreatic Cancer. Available from: <u>https://seer.cancer.gov/statfacts/html/pancreas.html</u>. Accessed October 2024; 3. Park W, et al. JAMA. 2021; 326:851-862; 4. Rawla P, et al. World J Oncol. 2019;10:10-27

## PANCREATIC CANCER HAS A LOW 5-YEAR SURVIVAL RATE

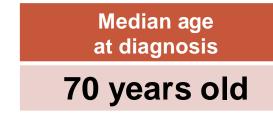







New cases come from SEER 12. Deaths come from U.S. Mortality.

All Races, Both Sexes. Rates are Age-Adjusted

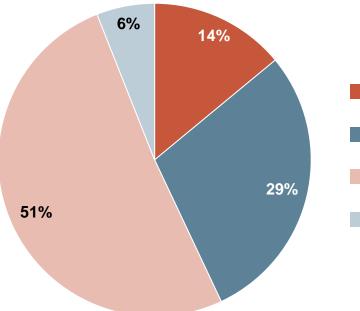

SEER, Surveillance, Epidemiology, and End Results program

Cancer Stat Facts: Pancreatic Cancer. Available from: <u>https://seer.cancer.gov/statfacts/html/pancreas.html</u>. Accessed October 2024

## PANCREATIC CANCER IS MOST FREQUENTLY DIAGNOSED IN PEOPLE AGED 65-74

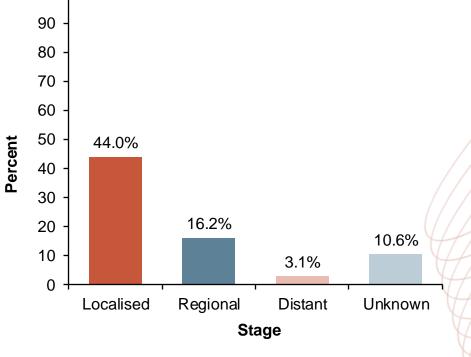


Pancreatic cancer is most frequently diagnosed among people aged 65-74 years




SEER, Surveillance, Epidemiology, and End Results program

Cancer Stat Facts: Pancreatic Cancer. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed October 2024


## MAJORITY OF PATIENTS HAVE ADVANCED DISEASE AT DIAGNOSIS AND A POOR PROGNOSIS

# PERCENT OF CASES BY STAGE AT DIAGNOSIS



#### Localised (14%) Confined to primary site

- Regional (29%) Spread to regional lymph nodes
- Distant (51%) Cancer has metastasized
- Unknown (6%) Unstaged



10

#### **5-YEAR RELATIVE SURVIVAL**

100

SEER, Surveillance, Epidemiology, and End Results program

Cancer Stat Facts: Pancreatic Cancer. Available from: https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed October 2024

# RISK FACTORS AND CLINICAL PRESENTATION

## **RISK FACTORS**

#### **MODIFIABLE/CLINICAL<sup>1-4</sup>**

- Smoking
- Alcohol consumption
- Being overweight
- Dietary factors
- Personal history of chronic pancreatitis
- Personal history of diabetes

#### NON-MODIFIABLE<sup>1-3,5,6</sup>

#### Age

- most frequently diagnosed:65-74 years of age
- median age at diagnosis of 70 years
- Family history of pancreatic cancer
- Hereditary conditions (~10-15% of PDAC cases):
  - hereditary pancreatitis
  - Lynch syndrome
  - mutations in the genes such as *BRCA2*, *PALB2*, *ATM*

ATM, ataxia-telangiectasia mutated; BRCA2, BReast CAncer 2 gene; PALB2, partner and localiser of BRCA2, PDAC, pancreatic ductal adenocarcinoma; SEER, Surveillance, Epidemiology, and End Results program

1. Ushio J, et al. Diagnostics (Basel) 2021;11(3): 562. doi: <u>10.3390/diagnostics11030562</u>; 2. Gupta N, et al. World J Gastroenterol. 2021;27:3158-81; 3. Wood L, et al. Gastroenterology 2022;163:386-402; 4. Dong-Mei M, et al. Technol Cancer Res Treat. 2023; 22: doi: <u>10.1177/15330338231164875</u>; 5. Cancer Stat Facts: Pancreatic Cancer. Available from: <u>https://seer.cancer.gov/statfacts/html/pancreas.html. Accessed October 2024</u>; 6. Copur MS, et al. Oncology (Williston Park). 2020;34:196-201.

## PDAC SYMPTOMS AND CLINICAL PRESENTATION

- Early-stage disease is usually clinically silent and can present as an incidental finding or symptoms related to local tumour effect (ie. painless jaundice)<sup>1</sup>
- Symptoms are generally non-specific
  - Abdominal pain is the most frequently reported clinical symptom
  - Other symptoms typically present when the tumour has grown and metastasised. These include:
    - Weight loss<sup>1,2</sup>
    - Fatigue<sup>3</sup>
    - Floating stools<sup>2</sup>
    - Pain<sup>1</sup>
    - Pruritus<sup>1</sup>
    - Jaundice<sup>1,2</sup>
    - Nausea and vomiting<sup>2</sup>

NCCN, National Comprehensive Cancer Network; PDAC, pancreatic ductal adenocarcinoma

1. Schawkat K, et al. Radiographics 2020; 40:1219-1239; 2. NCCN Guidelines Version 3.2024. Available at: <u>https://www.nccn.org/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guidelines/guide</u>

# **DIAGNOSIS AND EVALUATION**

## **DIAGNOSTIC MODALITIES**

#### Imaging is the main tool for diagnosis<sup>1,2</sup>

- **Computed tomography** (CT) and **Magnetic Resonance Imaging** (MRI) gold standard
- Endoscopic ultrasound obtain tissue for cytological diagnosis
- Endoscopic retrograde cholangiopancreatography (ERCP)
- Positron emission tomography–computed tomography (PET/CT)
- Magnetic resonance cholangiopancreatography (MRCP)

#### **Tumour markers**

- **CA19-9:** biomarker tool for monitoring and diagnosis of PDAC, however:
  - up to 10% of the PDAC population is a CA19-9 non-secretor<sup>1</sup>
  - sensitivity of biomarker test approx. 80%<sup>1</sup>
  - useful in symptomatic patients but not in asymptomatic patients as not tumour specific<sup>2</sup>
- CEA: can be useful in the diagnosis of pancreatic cancer when paired with CA19-9<sup>3</sup>

CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; PDAC, pancreatic ductal adenocarcinoma 1. Bugazia D, et al. Front Oncol. 2024;14:1386699; 2. Rawla P, et al. World J Oncol. 2019;10:10-27; 3. Meng Q, et al. Onco Targets Ther. 2017;10:4591-4598

## **MICROENVIRONMENT OF PDAC**

#### PATHOLOGY AND MOLECULAR ALTERATIONS OF PANCREATIC DUCT LESIONS

| <ul><li>Normal duct</li><li>Low cuboidal cells</li><li>Single cell layer</li></ul> | <ul> <li>PanIN-1A</li> <li>Elongated cells</li> <li>Mucin production</li> <li>PanIN-1B</li> <li>Papillary<br/>architecture</li> </ul> | <ul> <li>PanIN-2</li> <li>Nuclear abnormalities:<br/>e.g. enlargement,<br/>some loss of polarity,<br/>crowding</li> </ul> | <ul> <li>PanIN-3</li> <li>Budding into lumen</li> <li>Severe nuclear<br/>atypia</li> <li>Mitosis, some<br/>abnormal</li> </ul> | <ul> <li>AdenoCA</li> <li>Invasive growth</li> <li>Marked stromal reaction (desmoplasia)</li> </ul> |                              | ?                                               |   |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|---|
|                                                                                    | Received and                                                                                                                          | C.S.S.                                                                                                                    |                                                                                                                                | and the second                                                                                      | tumour                       | fibrosis                                        |   |
| ERBB2,<br>EGFR<br>KRAS<br>INK4A                                                    |                                                                                                                                       |                                                                                                                           |                                                                                                                                |                                                                                                     |                              | 22-                                             |   |
| Type of lesion         Activation         Loss of function                         | TP53                                                                                                                                  | SMAD4/DPC4<br>BRCA2*                                                                                                      | Telomerase                                                                                                                     |                                                                                                     |                              |                                                 |   |
| Telomere length Solid lines correspond to                                          | alterations that are detected                                                                                                         | at significant levels at the in                                                                                           |                                                                                                                                | es correspond to alteratio                                                                          | Image provided by Dr Efrat I | Dotan<br>stages but require further validation. | X |

AdenoCA, adenocarcinoma; BRCA2, BReast CAncer 2 gene; EGFR, epidermal growth factor receptor; ERBB2, erb-b2 receptor tyrosine kinase 2; INK4A, inhibitor of CDK4 (cyclin-dependent kinase 4); KRAS, Kirsten rat sarcoma viral oncogene homolog; PanIN-1A/1B/2/3, pancreatic intraepithelial neoplasia 1A/1B/2/3; PDAC, pancreatic ductal adenocarcinoma; TP53, tumour protein p53 gene

Hruban R, et al. Am J Surg Pathology. 2001;25:579-586; Chiao P and Ling J. Cancer Discovery 2011; 1: 103-5

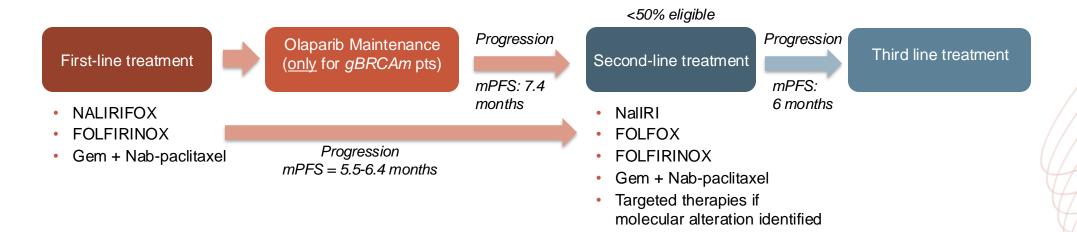
## **GENOMIC TESTING**

#### **Germline Genetic Testing**<sup>1,2</sup>

- Recommended to test for inherited mutations for any patients with confirmed pancreatic cancer diagnosis
- Comprehensive gene panels for hereditary cancer syndromes
- Genetic counseling is recommended for patients who test positive for a pathogenic mutation (ATM, BRCA1, BRCA2, CDKN2A, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, and TP53) or for patients with a positive family history of cancer, especially pancreatic cancer, regardless of mutation status.

#### Tumour/Somatic Molecular Profiling<sup>1,2</sup>

- Recommended for locally advanced/metastatic disease who are suitable for anti-cancer therapy
- Panels should include but not be limited to: fusions (ALK, NRG1, NTRK, ROS1, FGFR2, and RET), mutations (BRAF, BRCA1/2, HER2, KRAS, and PALB2), amplifications (HER2), microsatellite instability (MSI), mismatch repair deficiency (dMMR), or tumour mutational burden (TMB)
- Next generation sequencing is the gold standard method of detection. RNA sequencing assays are
  preferred for detecting RNA fusions and immunohistochemistry to detect HER2 overexpression


ATM, ataxia-telangiectasia mutated; BRAF, B-Raf proto-oncogene serine/threonine kinase; BRCA1/2, BReast CAncer 1/2 gene; DNA, deoxyribonucleic acid; FGFR2, fibroblast growth factor receptor 2; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral oncogene homolog; NCCN, National Comprehensive Cancer Network; NRG1, neuregulin-1; PALB2, partner and localiser of BRCA2; PDAC, pancreatic ductal adenocarcinoma; RET, rearranged during transfection; RNA, ribonucleic acid; ROS1, ROS proto-oncogene 1 receptor tyrosine kinase

1. NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024; 2. Zhen DB, et al. Therap Adv Gastroenterol 2023;16:17562848231171456

# OVERVIEW OF SYSTEMIC TREATMENTS FOR mPDAC

## **OVERVIEW OF TREATMENT FOR mPDAC**

- Chemotherapy is the mainstay of treatment for mPDAC patients
- Enrolment on clinical trials should always be encouraged



#### Figure adapted from Casolino 2022

FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; FOLFOX, folinic acid (leucovorin calcium), fluorouracil, and oxaliplatin; gBRCAm, germline BReast CAncer (BRCA) gene mutation; gem, gemcitabine; mPDAC, metastatic pancreatic ductal adenocarcinoma; mPFS, median progression-free survival; Nab, nanoparticle albumin-bound; NaI-IRI, nanoliposomal irinotecan; NALIRIFOX; NaI-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; mPDAC, metastatic pancreatic adenocarcinoma; mPFS, median progression-free survival

Casolino R, Biankin AV. Camb Prism Precis Med. 2023;1:e14

## **KEY STUDIES OF 1L SYSTEMIC THERAPY FOR mPDAC**

| Study                                         | Study                     |                   | A mag (NI)        | Primary  | Primary endpoint |                | Secondary | Second         | Secondary endpoint |                                                                                          | Notable adverse events                                                                                      |     |
|-----------------------------------------------|---------------------------|-------------------|-------------------|----------|------------------|----------------|-----------|----------------|--------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|
| setting                                       | Study                     | type              | Arm (N)           | endpoint | Months           | HR (95% CI)    | endpoint  | Months         | HR (95% CI)        | (%)                                                                                      | (Grade ≥3)                                                                                                  |     |
| <b>First-line</b> PRODIGE <sup>1</sup> (2011) | RCT,                      | FOLFIRINOX (171)  | 00                | 11.1     | 0.57             | 550            | 6.4       | 0.47           | 31.6               | FOLFIRINOX vs Gem:<br>neutropenia 47.5 vs 21.0%,                                         |                                                                                                             |     |
|                                               | (2011)                    | phase 2/3         | Gemcitabine (171) | OS       | 6.8              | (0.45 to 0.73) | PFS       | 3.3            | (0.37 to 0.59)     | (0.37 to 0.59)                                                                           | (0.37 to 0.59)                                                                                              | 9.4 |
|                                               |                           | RCT,              | Gem + NabP (431)  |          | 8.5              | 0.72           |           | 5.5            | 0.69               | 23.0                                                                                     | Gem + NabP vs Gem:<br>Neutropenia 38.0 vs. 27.0%,<br>leukopenia 31.0 vs 16.0%,                              |     |
| <b>First-line</b> MPACT <sup>2</sup> (2013)   | phase 3                   | Gemcitabine (430) | OS                | 6.7      | (0.62 to 0.83)   | PFS            | 3.7       | (0.58 to 0.82) | 7.0                | thrombocytopenia 13.0 vs 9.0%,<br>fatigue 17.0 vs. 7.0%, and<br>neuropathy 17.0 vs. 1.0% |                                                                                                             |     |
|                                               | NAPOLI-3 <sup>3</sup> RCT | RCT,              | NALIRIFOX (383)   |          | 11.1             | 0.83           |           | 7.4            | 0.69               | 41.8                                                                                     | NALIRIFOX vs Gem + NabP:<br>hypokalaemia 15.0 vs 4.0%,<br>diarrhoea 20.0 vs 5.0%, nausea<br>12.0 vs 3.0%.   |     |
| First-ling                                    | (2023)                    | phase 3           | Gem + NabP (387)  | OS       | 9.2              | (0.70-0.99)    | PFS       | 5.6            | (0.58-0.83)        | 36.2                                                                                     | Lower rates of hematological<br>AE's with NALIRIFOX:<br>neutropenia 14.0 vs 25.0%,<br>anaemia 11.0 vs 17.0% |     |
| Metastatic                                    | POLO <sup>4,5</sup>       | RCT,              | Olaparib (92)     |          | 7.4              | 0.53           |           | 19.0           | 0.83               | 23.1 <sup>b</sup>                                                                        | Olaparib vs placebo: Fatigue 5.6                                                                            |     |
|                                               |                           | phase 3           | Placebo (62)      | PFS      | 3.8              | (0.35 to 0.82) | OS        | 19.2           | (0.56 to 1.22)     | 11.5 <sup>b</sup>                                                                        | vs 0%, anaemia 12.2 vs 3.3%, decreased appetite 3.3 vs 0%                                                   |     |

<sup>a</sup> Patients with germline mutations in *BRCA1* or *BRCA2*, who had received at least 16 weeks of continuous platinum-based chemotherapy as the first line treatment for metastatic pancreatic cancer, were enrolled; <sup>b</sup>At data cut-off 1

AE, adverse event; BRCA1/2, BReast CAncer 1/2 gene; CI, confidence interval; FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; Gem+ Nab-P, gemcitabine and nab (nanoparticle albumin-bound)-paclitaxel; HR, hazard ratio; mPDAC, metastatic pancreatic ductal adenocarcinoma; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RCT, randomised controlled trial

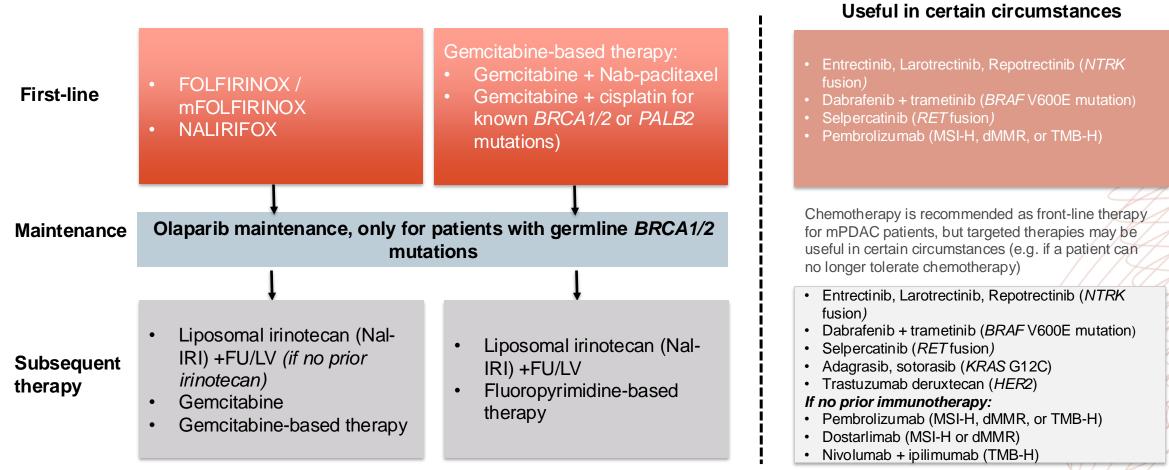
20

1. Conroy T et al, N Engl J Med. 2011;364:1817-25; 2. Von Hoff D, et al. N Engl J Med. 2013;369:1691-703; 3. Wainberg Z, et al. Lancet 2023;402:1272-81; 4. Golan T, et al. N Engl J Med. 2019;381:317-27; 5. Kindler H, et al. J Clin Oncol. 2022;40:3929-39

## **KEY STUDIES OF 2L SYSTEMIC THERAPY FOR MPDAC**

| Study                                            | Study   | Study                        | Arm (N)       | Primary Primary endpo |             | y endpoint             |          |             | Secondary endpoint        |                                                                                                      | Notable                                                                                                   |
|--------------------------------------------------|---------|------------------------------|---------------|-----------------------|-------------|------------------------|----------|-------------|---------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| setting                                          | Cludy   | type                         |               | endpoint              | Months      | HR (95% CI)            | endpoint | Months      | HR (95% CI)               | (%)                                                                                                  | adverse events                                                                                            |
| Second-<br>line CONKO-003 <sup>1</sup><br>(2014) |         | RCT,                         | OFF (77)      | OS                    | 5.9         | 0.66                   | PFS      | 2.9         | 0.68                      | _                                                                                                    | Rates of adverse events<br>were similar between<br>treatment arms, with the<br>exception of grades 1 to 2 |
|                                                  | phase 3 | FF (91)                      | 00            | 3.3                   | (0.48-0.91) | 110                    | 2.0      | (0.50-0.94) | _                         | neurotoxicity 38.2% and<br>7.1% in the OFF and FF<br>groups                                          |                                                                                                           |
| Second-                                          |         | <sup>2</sup> RCT,            | mFOLFOX (54)  |                       | 3.0         | 1.00                   |          | 6.1         | 1.78                      | 13.2                                                                                                 | Increased toxicity was<br>observed with the<br>addition of oxaliplatin, with<br>grade 3/4 adverse events  |
| Second-<br>line (2016)                           | phase 3 | 5FU/LV (54)                  | PFS           | 2.8                   | (0.66-1.53) | OS                     | 9.9      | (1.08-2.93) | 8.5                       | occurring in 63.0% of<br>patients who received<br>mFOLFOX6 and 11.0% of<br>those who received FU/LV. |                                                                                                           |
| Second-<br>line NAPOLI-1 <sup>3</sup><br>(2016)  |         | Nal-IRI + 5-FU/LV (117)      |               | 6.1                   |             |                        | 3.1      | 0.56        | 16.2                      | Most frequent grade 3 or 4<br>AEs for Nal-IRI + 5-FU/LV<br>vs 5-FU/LV: neutropenia                   |                                                                                                           |
|                                                  |         | <sup>3</sup> RCT,<br>phase 3 | 5-FU/LV (119) | OS                    | 4.2         | 0.67<br>(0.49 to 0.92) | 2) PFS   | 1.5         | 0.38<br>(0.41 to<br>0.75) | 0.8                                                                                                  | 27.0 vs 1.0%, diarrhoea<br>13.0 vs 4.0%, vomiting<br>11.0 vs 3.0%, and fatigue<br>14.0 vs 4.0%            |

5-FU, fluorouracil; AE, adverse event; CI, confidence interval; FF, folinic acid (leucovorin calcium) and fluorouracil; HR, hazard ratio; LV, leucovorin calcium (folinic acid); mFOLFOX, modified FOLFOX: folinic acid (leucovorin calcium), fluorouracil, and oxaliplatin; mPDAC, metastatic pancreatic ductal adenocarcinoma; NaI-IRI, nanoliposomal irinotecan; OFF, oxaliplatin and FF; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RCT, randomised controlled trial 1. Oettle H, et al. J Clin Oncol. 2014; 32: 2423-9; 2. Gill S, et al. J Clin Oncol. 2016;10;3914-20; 3. Wang-Gillam A, et al. Lancet 2016;387:545-57


2'

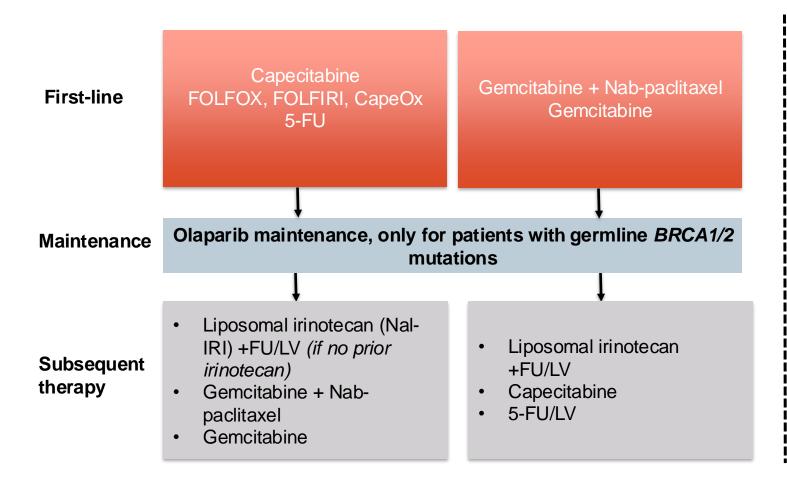
## **CONSIDERATIONS FOR TREATMENT SELECTION**

- Patient performance status is key factor for treatment selection
- Age and frailty
- Co-morbidities
- Molecular profile
- Patient preference
- Supportive system

## **SYSTEMIC THERAPIES FOR GOOD PS 0-1**

#### **BASED ON NCCN GUIDELINES**




5-FU, fluorouracil; BRAF, B-Raf proto-oncogene serine/threonine kinase; BRCA1/2, BReast CAncer 1/2 gene; dMMR, deficient DNA mismatch repair; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral oncogene homolog; LV, leucovorin calcium (folinic acid); (m)FOLFIRINOX, (modified) FOLFIRINOX, folinic acid (leucovorin calcium), fluorouracil, irinotecan, and oxaliplatin; MSI-H, microsatellite instability-high; Nab, nanoparticle albumin-bound; Nal-IRI, nanoliposomal irinotecan; NALIRIFOX; Nal-IRI, fluorouracil/folinic acid (leucovorin calcium), and oxaliplatin; NCCN, National Comprehensive Cancer Network; NRG1, neuregulin-1; NTRK, neurotrophic tyrosine receptor kinase; PALB2, partner and localiser of BRCA2; PS, performance status; RET, rearranged during transfection; TMB-H, tumour mutational burden-high

NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024 NCCN guidelines for pancreatic adenocarcinoma, Version 3.2024: pancreatic.pdf (nccn.org)

**Targeted therapies** 

## **SYSTEMIC THERAPIES FOR INTERMEDIATE PS 2 OR HIGHER**

#### **BASED ON NCCN GUIDELINES**



#### Targeted therapies Useful in certain circumstances

- Entrectinib, Larotrectinib, Repotrectinib (NTRK fusion)
- Dabrafenib + trametinib (BRAF V600E mutation)
- Selpercatinib (*RET* fusion) [ECOG PS 2 only for firstline]
- Pembrolizumab (MSI-H, dMMR, or TMB-H)

Chemotherapy is recommended as front-line therapy for mPDAC patients, but targeted therapies may be useful in certain circumstances (e.g. if a patient can no longer tolerate chemotherapy)

- Entrectinib, Larotrectinib, Repotrectinib (*NTRK* fusion)
- Dabrafenib + trametinib (*BRAF* V600E mutation)
- Selpercatinib (*RET* fusion) [ECOG PS 2 only for firstline]
- Adagrasib, sotorasib (KRAS G12C)
- If no prior immunotherapy:
- Pembrolizumab (MSI-H, dMMR, or TMB-H)
- Dostarlimab (MSI-H or dMMR)
- Nivolumab + ipilimumab (TMB-H)

5-FU, fluorouracil; BRAF, B-Raf proto-oncogene serine/threonine kinase; BRCA1/2, BReast CAncer 1/2 gene; CapeOX, capecitabine and oxaliplatin; dMMR, deficient DNA mismatch repair; FOLFOX, folinic acid (leucovorin calcium), fluorouracil, and oxaliplatin; FOLFIRI, folinic acid (leucovorin calcium), fluorouracil and irinotecan; KRAS, Kirsten rat sarcoma viral oncogene homolog; LV, leucovorin calcium (folinic acid); MSI-H, microsatellite instability-high; Nab, nanoparticle albumin-bound; NCCN, National Comprehensive Cancer Network; NRG1, neuregulin-1; NTRK, neurotrophic tyrosine receptor kinase; PALB2, partner and localiser of BRCA2; PS, performance status; RET, rearranged during transfection; TMB-H, tumour mutational burden-high NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024;

# PATIENTS WITH POOR PERFORMANCE STATUS AND PROGRESSIVE DISEASE

#### **PALLIATIVE CARE**

- Single agent chemotherapy (gemcitabine)
- **Targeted therapy** (based on molecular profiling and as clinically indicated)
- Palliative radiotherapy
  - To relieve pain, bleeding and/or local obstructive symptoms

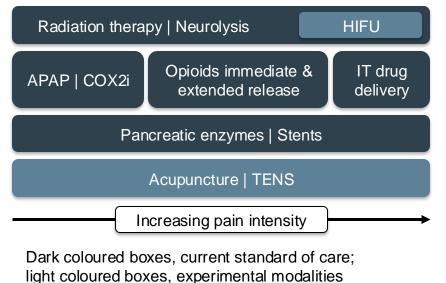
NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024

## **BEST SUPPORTIVE CARE**

## mPDAC PATIENTS MAY REQUIRE BEST SUPPORTIVE CARE ALONGSIDE SYSTEMIC TREATMENT

- Biliary stent
  - To treat biliary obstruction
- Pain management
- Pancreatic enzyme replacement
  - In patients with symptoms of exocrine enzyme deficiency
- Physical therapy
  - To improve QoL by controlling symptoms of pain, reducing fatigue, and strengthening weak muscles

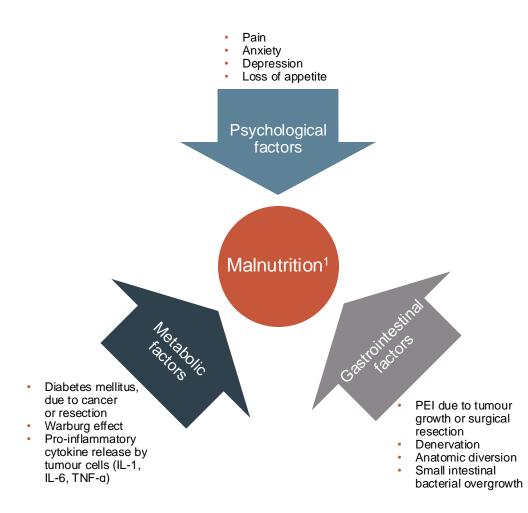
mPDAC, metastatic pancreatic ductal adenocarcinoma; NCCN, National Comprehensive Cancer Network; QoL, quality of life NCCN Guidelines Version 3.2024. Available at: <u>https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455</u>. Accessed October 2024; van Weert E, et al. Physical Therapy 2010; 90: 1413-1425


## PAIN MANAGEMENT

- Many patients continue to have cancer-related pain despite responding to chemotherapy
- Pain management modalities can be used throughout the patient's clinical course and to achieve optimal relief, can be switched or added to

#### **CURRENT PAIN TREATMENTS**

| Treatment modalities             | Barriers                                                                                                                                                                              |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Systemic chemotherapy            | Performance status of patients at presentation                                                                                                                                        |
| Opioids                          | Side effects, concern for abuse, provider comfort on required dosing                                                                                                                  |
| Radiation therapy                | Performance status, minimal barriers outside of locations of radiation therapy centers                                                                                                |
| Neurolysis/HIFU                  | Interventional gastroenterologists, although<br>available at academic centers, may not be<br>available in the general community                                                       |
| Intrathecal drug delivery        | <ul> <li>Limited availability of pain specialists</li> <li>Resource intensive</li> <li>Unclear benefit and cost effectiveness in those expected to live less than 6 months</li> </ul> |
| CAM (CBD, cannabis, acupuncture) | Lack of data and lack of coverage                                                                                                                                                     |


#### **CURRENT PAIN TREATMENTS**

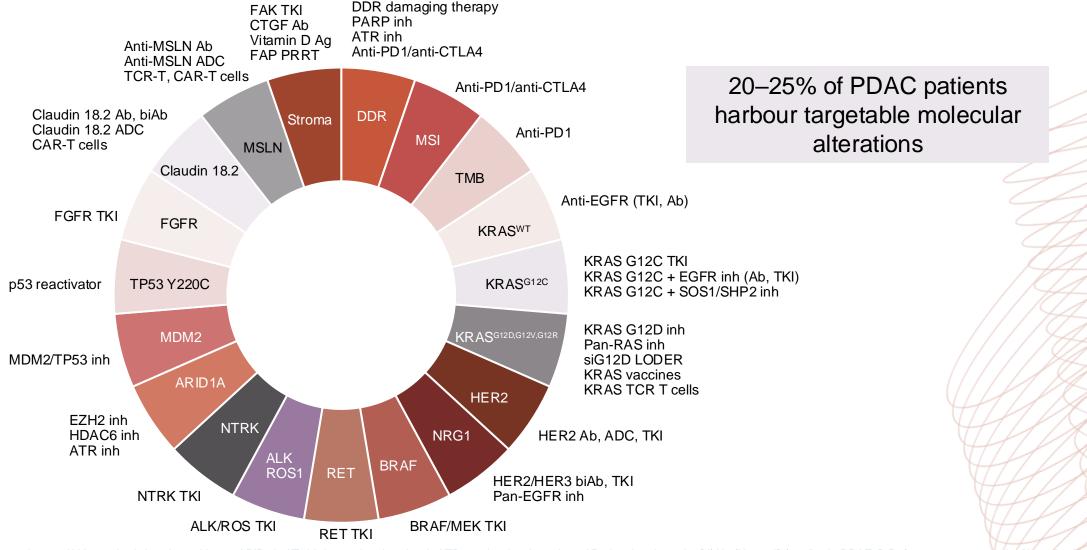


28

APAP, acetaminophen; CAM, complementary and alternative medicine; CBD, cannabidiol; COX-2i, cyclooxygenase-2 inhibitor; HIFU, high-intensity focused ultrasound; IT, intrathecal; TENS, transcutaneous electrical nerve stimulation. Coveler AL, et al. Oncologist. 2021;26:e971-e982

## MANAGING MALDIGESTION AND MALABSORPTION




- Pancreatic tumours often result in occlusion of the main pancreatic duct, impeding production of pancreatic enzymes or the transportation into the duodenum and resulting in pancreatic exocrine enzyme deficiency leading to malabsorption and postprandial pain<sup>1,2</sup>
- Pancreatic enzyme replacement therapy (PERT) may enhance nutritional status, helping the patient to undergo chemotherapy, increase quality of life and overall survival<sup>1</sup>

29

IL-1/6, interleukin 1/6; PEI, pancreatic exocrine insufficiency; TNF- α, tumour necrosis factor alpha 1. Pezzilli R, et al. Cancers (Basel). 2020;12:275; 2. Coveler AL, et al. Oncologist 2021;26:e971-e982

TARGETED THERAPY IN PANCREATIC CANCER

## **POTENTIAL MOLECULAR TARGETS IN PDAC**

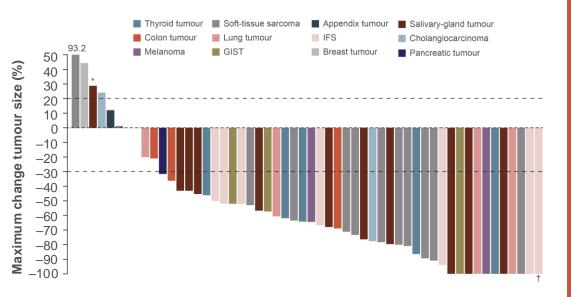


ADC, antibody-drug conjugate; ALK, anaplastic lymphoma kinase; ARID1A, AT-rich interaction domain 1A; ATR, ataxia telangiectasia and Rad3-related protein; (bi)Ab, (bi-specific) antibody; BRAF, B-Raf proto-oncogene serine/threonine kinase; CAR-T, chimeric antigen receptor T-cell therapy; CTLA-4; cytotoxic T-lymphocyte-associated protein 4; DDR, DNA damage repair; EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; FAP, fibroblast activation protein; FGFR, fibroblast growth factor receptor; HDAC, histone deacetylase 6; inh, inhibitor; HER2/3, human epidermal growth factor receptor 2/3; KRAS, Kirsten rat sarcoma viral oncogene homolog; MEK, mitogen-activated protein kinase; MSI, microsatellite instability; MSLN, mesothelin; NRG1, neuregulin-1; NTRK, neurotrophic tyrosine receptor kinase; PARP, poly(ADP-ribose) polymerase; PD-1, programmed cell death protein 1; PDAC, pancreatic ductal adenocarcinoma; PRRT, peptide receptor radionuclide therapy; RAS, rat sarcoma; RET, rearranged during transfection; ROS, ROS proto-oncogene receptor tyrosine kinase; siG12D LODER, small interfering RNA G12D Local Drug EluteR; TCR, T-cell receptor; TKI, tyrosine kinase inhibitor; TMB, tumour mutational burden; TP53, tumour protein p53 gene; WT, wild-type

Zhen DB, et al. Therap Adv Gastroenterol 2023;16:17562848231171456

## TARGETED THERAPY FOR PANCREATIC ADENOCARCINOMA

| Molecular Target     | Targeted Therapy                | NCCN panel recommendations                                                                                                                                                                                                 |  |  |  |  |  |
|----------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                      | Larotrectinib                   | 1 <sup>st</sup> line and subsequent treatment options for pts with NTRK gene fusion-positive locally advance                                                                                                               |  |  |  |  |  |
| NTRK gene fusions    | Entrectinib                     | or metastatic pancreatic adenocarcinoma and for recurrent disease                                                                                                                                                          |  |  |  |  |  |
|                      | Repotrectinib                   | Category 2B recommendation as 1 <sup>st</sup> line for patients with metastatic disease (PS 3) and subsequent therapy or therapy for recurrent disease for patients with intermediate/poor PS (PS 2-3)                     |  |  |  |  |  |
| RET gene fusions     | Selpercatinib                   | $1^{st}$ line: pts with locally advanced/metastatic disease (PS 0–2) and as subsequent therapy for pts with good PS (0–1)                                                                                                  |  |  |  |  |  |
| NRG1 gene fusions    | Zenocutuzumab-zbco              | FDA approved for advanced, unresectable, or metastatic pancreatic adenocarcinoma harboring a NRG1 gene fusion with disease progression on or after prior systemic therapy. Awaiting incorporation into the NCCN guidelines |  |  |  |  |  |
| KRAS G12C mutations  | Adagrasib                       | Subcoquent therapy entions for patients with any PS (entergory 2P for poor PS)                                                                                                                                             |  |  |  |  |  |
|                      | Sotorasib                       | Subsequent therapy options for patients with any PS (category 2B for poor PS)                                                                                                                                              |  |  |  |  |  |
| BRAF V600E mutations | Dabrefenib/trametinib           | 1 <sup>st</sup> line: metastatic disease (category 2B) and as subsequent line options (category 2A) for pts with good/poor PS and BRAF V600E mutations                                                                     |  |  |  |  |  |
| HER2-positive        | Fam-trastuzumab-deruxtecan-nxki | As a subsequent therapy option only for patients with good PS and HER2 IHC 3+ expression                                                                                                                                   |  |  |  |  |  |
|                      | Pembrolizumab                   | In the advanced disease setting for first-line and subsequent treatment (if no prior immunotherapy                                                                                                                         |  |  |  |  |  |
|                      | Dostarlimab-gxly                | As a subsequent treatment option (if no prior immunotherapy) for patients with MSI-H or dMMR locally advanced, metastatic, or recurrent pancreatic adenocarcinoma and any PS                                               |  |  |  |  |  |
|                      | Nivolumab/lpilimumab            | Category 2B, subsequent therapy option for patients with good or intermediate PS and those who did not receive prior immunotherapy                                                                                         |  |  |  |  |  |

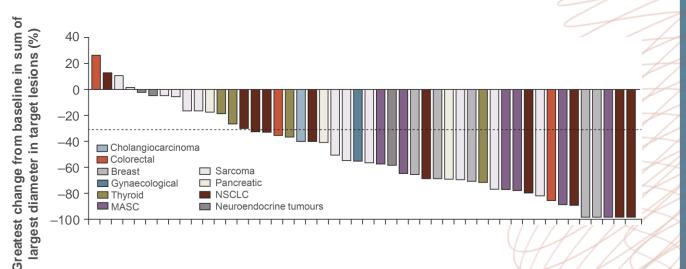

BRAF, B-Raf proto-oncogene serine/threonine kinase; dMMR, deficient DNA mismatch repair; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma viral oncogene homolog; MSI-H, microsatellite instability-high; NTRK, neurotrophic tyrosine receptor kinase; PDAC, pancreatic ductal adenocarcinoma; PS, performance status; RAS, rat sarcoma; RET, rearranged during transfection; TMB-H, tumour mutational burden-high

NCCN Guidelines Version 3.2024. Available at: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455. Accessed October 2024 NCCN guidelines for pancreatic adenocarcinoma, Version 3.2024: pancreatic.pdf (nccn.org)

## INITIAL EFFICACY RESULTS OF APPROVED *TRK* INHIBITORS: RESPONSES BY TUMOUR TYPE

#### Larotrectinib<sup>1</sup>

Data cut-off: 17 July 2017




Objective responses with larotrectinib are seen in multiple tumour types and in most of the patients:

#### 80%, 95% CI: 67-90

#### Entrectinib<sup>2</sup>

#### Data cut-off: 31 May 2018

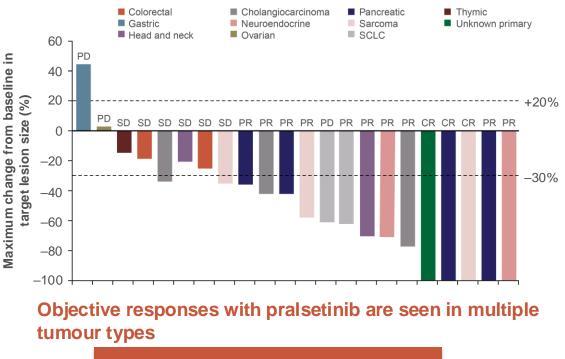


Objective responses with entrectinib are seen in multiple tumour types and in most of the patients:

57%, 95% CI: 43.2-70.8

\* Patient had TRK solvent front resistance mutation (NTRK3 G623R) at baseline owing to previous therapy

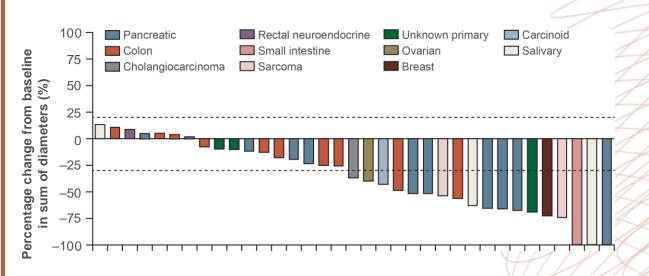
<sup>†</sup> Patient had a pathological complete response


CI, confidence interval; GIST, gastrointestinal stromal tumour; IFS, infantile fibrosarcoma; MASC, mammary analogue secretory carcinoma; NSCLC, non-small-cell lung cancer; TRK, tropomyosin receptor kinase

1. Drilon A, et al. N Engl J Med. 2018;378:731-739; 2. Doebele RC, et al. Lancet Oncol. 2020;21:271-282

## INITIAL EFFICACY RESULTS OF *RET* INHIBITORS: RESPONSES BY TUMOUR TYPE

#### **ARROW:** pralsetinib<sup>1</sup>


#### Data cut-off: 18 Oct 2021



#### ORR: 57%, 95% CI: 35-77

#### LIBRETTO-001: selpercatinib<sup>2</sup>

#### Data cut-off: 24 Sep 2021



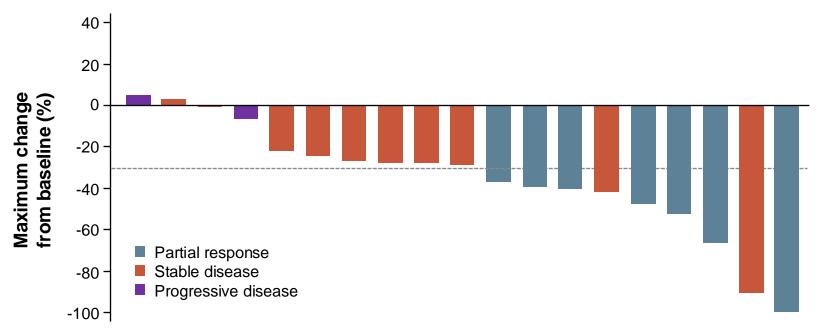
Objective responses with selpercatinib are seen in multiple tumour types

ORR: 43.9%, 95% CI: 28.5-60.3

CI, confidence interval; CR, complete response; ORR, objective response rate; PD, progressive disease; PR, partial response; RET, rearranged during transfection; SCLC, small-cell lung cancer; SD, stable disease

1. Subbiah V, et al. Nat Med. 2022;28:1640-1645; 2. Subbiah V, et al. Lancet Oncol. 2022;23:1261-1273

#### INITIAL EFFICACY RESULTS OF NRG1 INHIBITOR ZENOCUTUZUMAB: RESPONSES BY TUMOUR TYPE




CI, confidence interval; CRC, colorectal cancer; CUP, cancer of unknown primary; PD, progressive disease; NRG1, Neuregulin 1; NSCLC, non-small-cell lung cancer; ORR, objective response rate; PDAC, pancreatic ductal adenocarcinoma; PR, partial response; RCC, renal cell carcinoma; RECIST, Response Evaluation Criteria in Solid Tumours; SD, stable disease; UNK, unknown

Schram A, et al. J. Clin Oncol 2022; 40 (16\_suppl): 105 (oral presentation ASCO 2022)

## INITIAL EFFICACY RESULTS OF KRAS G12C INHIBITOR ADAGRASIB

MAXIMUM PERCENTAGE TUMOUR CHANGE FROM BASELINE IN PATIENTS WITH PDAC



**Evaluable patients** 

PDAC, pancreatic ductal adenocarcinoma Bekaii-Saab T, et al. J Clin Oncol 2023; 41: 4097-4106

## **SUMMARY**

- Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor prognosis and rising incidence and accounts for the majority of pancreatic neoplasms
- Pancreatic cancer is difficult to diagnose early due to the lack of early symptoms and 80-90% of patients are diagnosed at late stages with unresectable tumours
- Symptoms are generally non-specific with abdominal pain being the most frequently reported clinical symptom
- All patients with metastatic pancreatic cancer should undergo germline and somatic next-generation sequencing to identify possible actionable variants
- Cytotoxic chemotherapy is the cornerstone of systemic therapy for advanced or metastatic pancreatic cancer
- Maintenance therapy after a period of chemotherapy is an option for patients with BRCA alterations
- Choice of treatment depends on several factors, including patients' performance status, co-morbidities and molecular targets



**GI** connect

POWERED BY COR2ED

Visit us at



Heading to the heart of Independent Medical Education since 2012