# EVOLVING ROLE OF RADIOLIGAND THERAPY IN NETS

Neuroendocrine tumours (NETs) arise from hormone-secreting cells. Treatment options vary and include surgery, somatostatin analogues, radiotherapy, chemotherapy, targeted agents, and peptide receptor radionuclide therapy (PRRT).



## PRRT IS HERE TO STAY

Building on the results of NETTER-1, the recent COMPETE study consolidated the role of **PRRT** as a very effective 2<sup>nd</sup> line treatment, with <sup>177</sup>Lu-edotreotide (<sup>177</sup>Lu-DOTATOC) showing superior efficacy to

Expert experience shows that NETs are **not** as rare as once thought. As patients may live with the disease for many years,[1] **optimising care needs collaboration** over the whole of the patient's journey.



Partnerships with patients, caregivers & HCPs

Best outcomes achieved with multi-disciplinary collaborations and shared and informed decision-making with the patient to support improved, knowledgeable, and better-coordinated/-aligned NET medical teams. [2]



#### PAIRING THE RIGHT PATIENT WITH THE RIGHT TREATMENT

Optimising treatment strategies needs an understanding of the clinical trial data and how studies differ.

|                         | COMPETE [3]                                                                                   | COMPOSE [4,5]                                                        | <b>NETTER-1</b> [5,6]                                                                                                                                                                          | <b>NETTER-2</b> [7]                                                                                          |
|-------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Tumour type             | G1/G2<br>well-differentiated<br>GEP-NETs                                                      | G2/G3 well-differentiated<br>GE-NETs or P-NETs<br>Ki67 ≥15% and ≤55% | G1/G2<br>well-differentiated,<br>metastatic midgut                                                                                                                                             | G2/G3 well-differentiated<br>GEP-NETs<br>Ki67 ≥10% and ≤55%                                                  |
| Study treatment         | <sup>177</sup> Lu-edotreotide                                                                 | <sup>177</sup> Lu-edotreotide                                        | <sup>177</sup> Lu-DOTATATE                                                                                                                                                                     | <sup>177</sup> Lu-DOTATATE<br>+ octreotide LAR                                                               |
| Comparator<br>          | Everolimus                                                                                    | SoC                                                                  | Octreotide LAR                                                                                                                                                                                 | Octreotide LAR                                                                                               |
| Treatment line          | 1 <sup>st</sup> and 2 <sup>nd</sup> line                                                      | 1st and 2nd line                                                     | 2 <sup>nd</sup> line                                                                                                                                                                           | 1 <sup>st</sup> line                                                                                         |
| Efficacy<br>results     | Median PFS 23.9 months with $^{17}$ Lu-edotreotide vs 14.1 months with everolimus $(p=0.022)$ | Expected 2027                                                        | Median PFS not reached with $^{177}$ Lu-DOTATATE vs 8.4 months with octreotide LAR $(p < 0.001)$ Estimated rivibude of death 60% lower with $^{177}$ Lu-DOTATATE vs octreotide LAR $(p=0.004)$ | Median PFS 22.8 months<br>with <sup>177</sup> Lu-DOTATATE<br>vs 8.5 months with<br>octreotide LAR (p<0.0001) |
| Key efficacy<br>outcome | Clinically relevant and<br>statistically significant benefit<br>in PFS vs everolimus          | Expected 2027                                                        | Markedly longer PFS with  177Lu-DOTATATE vs high-dose octreotide LAR alone                                                                                                                     | Significantly extended<br>PFS with combination vs<br>octreotide LAR alone                                    |
| Key safety<br>outcome   | Well-tolerated with<br>favourable safety results                                              | Expected 2027                                                        | Limited acute<br>toxic effects                                                                                                                                                                 | Consistent with the established profile                                                                      |




# **Imaging**

To support diagnosis:

- MRI of the abdomen and pelvis with a contrast agent or CT of abdomen and pelvis with arterial
- Somatostatin receptor functional imaging at diagnosis
- Gallium-68 and, in the US, copper-64 radioisotopes at diagnosis
- DOTATATE/DOTATOC PET/CT if surgery indicated, to identify "occult disease"

#### **Patient with P-NET**

despite multiple treatments, including several surgeries, chemotherapy, SSAs, and everolimus.





Same patient showing

complete response after PRRT.

Source: Images kindly provided by Dr Ieva Ciuciulkaite, Dept. of Nuclear Medicine, University Hospital Essen, Germany

### Managing adverse ěveňts\*

- Most important for patients is **nausea during infusion of PRRT**. This is not associated directly with PRRT itself, but adjunct renal-protection agents [8]
- For regulators, renal dose-effects and potential renal toxicity are fundamental; there are long-term data to show that PRRTs are renally well-tolerated [9]
- For HCPs using maintenance therapy, long term bone marrow function effects are most relevant, although they are infrequent [10]

\*Expert opinion

G, grade, GE, gastroenteral; HCP, healthcare practitioner; Ki67, Kiel 67; LAR, long-acting release; CT, computerised tomography; Lu, lutetium; MRI, magnetic resonance imaging; P, pancreatic, PET, positron emission tomography; PFS, progression-free survival; SoC, standard of care; SSA, somatostatin analogue: US, United States.

- Stang A, et al. Cancer Epidemiol. 2024;93:102659. ] Singh S, et al. J Glob Oncol. 2016;8;3:43-53. ] Capdevila J, et al. ENETS 2025; abstract #4669.
- Available from: https://clinicaltrials.gov/study/
- NCT04919226. Accessed September 2025.
- [5] Harris PE, Zhernosekov K. Front Endocrinol (Lausanne). 2022;31;13:941832.

- [6] Strosberg J, et al. N Engl J Med. 2017;376:125-35 [7] Singh S, et al. Lancet. 2024;403:2807-17. [8] Available from: https://snmmi.org/Patients/Patients/Fact-Sheets/ What-is-Peptide-Receptor-Radionuclide-Therapy--PRRT--.aspx
- Accessed September 2025. Baum RP, et al. Theranostics.
- [10] Sabet A, et al. J Nucl Med. 2013;54:1857-61.



September 2025

Go to COR2ED COM for more information and resources